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0.1    Objectives 

The objective of this research was to develop tools for modeling, analysis, and control design for 
unsteady flow and combustion phenomena critical to operation of military aeroengines. 

0.2    Summary of accomplishments 

We have made significant progress in control-oriented modeling, model validation, and control design 
for processes affecting operation of aeroengines. The progress in modeling includes control-oriented 
reduced order models for turbomachinery flow including compressors, diffusers, recirculation zones, 
and jets in cross flow. Major breakthrough was achieved in the area of nonlinear model validation 
and parameter identification, with particular focus on models of combustion instability. In particular, 
method of nonlinear model validation and parameter identification for systems with non-equilibrium 
attractors and noise drive systems based on comparison of long-term statistics has been transitioned 
to internal UTRC projects. New results in control of limit-cycling systems with bounded control 
were obtained. Significant progress was achieved in adaptive control of combustion instability, control 
of pressure recovery in diffusers, control of recirculation zone, and control of jets in cross flow. In 
particular, framework for control of mixing based on hierarchy of vorticity evolution models has been 
introduced. The framework has been used in control of mixing enhancement in jets in cross-flow and 
led to experimental validation of model-based analysis. Results of the research are in 13 conference 
papers (10 published, 3 submitted) and 7 journal papers (1 published, 4 submitted, 2 in preparation). 
4 invited sessions were organized under this effort. 

0.3    Organization of the report 

We provide extended abstract for the results that are published and hence publily available. We 
provide more details for the results that are not available, like papers that are submitted or in the case 
of ungoing research. List of references is available in the last two chapters of the report. References to 
journal papers that were written under this contract are referenced with letter "j" in front ([jl], []2], 
etc.). Conference papers written under this contract are referenced with letter "c" in front ([cl], [c2], 
etc.). 
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Chapter 1 

Modeling and analysis of unsteady 
flows 

1.1 Adaptive detection of instabilities and nonlinear analysis of a 
reduced-order model for flutter and rotating stall in turboma- 
chinery 

In paper [cl] by Copeland, Kevrekidis, and Ramiro Rico-Martinez system parameters were adap- 
tively varied to identify bifurcations from equilibrium in simulations of a reduced-order model for 
turbomachinery aeromechanics. An element of the adaptive process is identification of a low-order 
locally nonlinear discrete-time map from the observables. The nonlinear behavior of the system in the 
neighborhood of the bifurcation is then estimated from the identified system. 

Flutter and rotating stall are instabilities that can limit the design and operability of turbine 
engines. Rotating stall is primarily aerodynamic in nature. Flutter involves strong coupling between 
blade vibration and unsteady flow perturbations. Flutter also contributes to high-cycle fatigue and 
can be an important component of lifetime cost. In contrast to rotating stall, the current capability 
for flutter prediction is poor, hence problems are often found late in development cycle and remedial 
efforts are expensive. Nonlinear dynamics may be important because rotating stall typically occurs as 
a subcritical bifurcation. In the presence of subcritical instability, linear analysis alone is not sufficient 
to determine boundaries for safe operability. 

A generic approach to mapping operability regions in an experiment is to successively set the 
operating parameters to fixed values and passively observe the system dynamics as the transients 
decay. When a qualitative change in the long-term behavior of the system is observed between two 
consecutive parameter settings it may be inferred that a bifurcation exists at some critical intermediate 
parameter value. This critical value may be bracketed to any acceptable accuracy through iterative 
bisection. This same procedure is applied generically to mathematical models when the only tool for 
investigation is direct simulation. This is often the case in computational fluid dynamics, for example. 

The set-and-observe approach is straightforward but it has some obvious shortcomings. As one 
approaches a bifurcation point, the subcritical state of the system becomes less stable and the transients 
may take longer and longer to decay. In the detection of hard bifurcations such as the saddle-node 
bifurcation or the subcritical Hopf bifurcation there is the additional complication that overstepping 
the critical parameter value from subcritical to supercritical values drives the system far from the 
original neighborhood of phase space. Bringing the system back to the neighborhood of the bifurcation 
point may require excessive effort. 

In this paper, detection of bifurcation points by adaptively varying the operating parameters is 



demonstrated. A local low-order nonlinear model is identified from input/output data as the system 
evolves. This identified model is used to estimate critical parameter values for bifurcation. A controller 
then adjusts the parameters (using it essentially as an actuator) to bring the system progressively closer 
to the bifurcation point. The identified model may also be used to interpret the nonlinear dynamics 
in the neighborhood of the bifurcation. 

For more details see [cl]. 

1.2    Analysis of low dimensional dynamics of flow separation 

The increased interest in the modeling and active control of separation phenomena [21, 107J is moti- 
vated by their prevalence in several industrial situations where device performance is often hampered 
by large scale separation (e.g. flow within engine ducts and flow past high angle-of-attack airfoils). 
Until recently, separated flows have been studied and controlled using knowledge about the hydro- 
dynamic instabilities that govern the dynamics near the separation location. These studies provide 
useful insights into the flow physics underlying separation, but do not produce models that can be used 
for prediction or control. The use of the dynamical systems approach in hydrodynamics [4] appears 
promising for the development of reduced-order models of flow separation dynamics. In particular, 
"parameter-dependent" models are desired that can be used to predict bifurcations of flow states and 
to design effective control methods. 

Low-dimensional models for active control of flow separation are considered in the papers [c2] by 
S. Narayanan, A.I. Khibnik, C.A. Jacobson, Y. Kevrekedis , R. Rico-Martinez and[jl] by K. Lust and 
A.I. Khibnik, S. Narayanan, C.A. Jacobson, and K. Lust. 

POD method was used to analyze the dynamics of flow separation in a planar diffuser. The pa- 
rameter space of interest is associated with a variable diffuser geometry, given here by the expansion 
angle. Two-dimensional direct numerical simulations of the diffuser flow were performed at a Reynolds 
number of 5,200. For increasing diffuser angle, the flow transitions from a symmetric steady attached 
flow to an asymmetric separated unsteady flow (also termed transitory stall), followed by a steady 
separated (stalled) flow and leading to a fully separated jet-like flow. Numerical data corresponding 
to flow fields across the first transition (from attached flow to transitory stall) were combined to yield 
a set of POD modes that span the dynamics (both transients and attractors) for different expansion 
angles. The observed dynamics, inferred from the first few POD modes and their coefficients, included 
symmetry breaking, steady states, limit cycles, invariant tori and chaotic motion. Limit cycles involve 
low frequency oscillations associated with unsteady stall shedding, independently confirmed via labo- 
ratory experiments. A bifurcation scenario (see Figure 1.1) was hypothesized to provide insight into 
low dimensional dynamics underlying the first transition and to guide the development of a control 
strategy for separation. The POD modes were also used to construct reduced order models (Galerkin 
and neural network models). The paper briefly discusses these approaches and a proposed discretized 
Galerkin model. 

We study the spatiotemporal dynamics of flow separation in a planar diffuser to extract reduced- 
order models that may be used to guide active separation control. Proper orthogonal decomposition of 
numerical simulation data revealed organized dynamics of the large-scale separated structures. This 
result, combined with the observation (in simulations as well as laboratory experiments) of limit 
cycle/quasiperiodic dynamics and spatial symmetry breaking, suggests an underlying low-dimensional 
dynamical system. Galerkin-based and neural network-based modeling of the POD modal coefficients 
lead to (parameter dependent) low-dimensional models of separation dynamics. The use of such models 
for active separation control appears promising. 

Note that the application of the POD for the modeling of deparated diffuser flows has not been 
much explored. One of the obstacles that makes such an application to the diffuser non-trivial is the 



Flow classification in the diffuser based on flow visualization and experimentally 
obtained diffuser pressure recovery. 

The corresponding bifurcation diagram was obtained using POD modes from CFD 
computations. 
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variable geometry. In most known applications of POD to fluid flows, either the flow conditions or the 
parameters defining the boundary conditions are assumed to be fixed. Computed POD modes may 
still be used to span the flow fields for different flow conditions or parameters (e.g., varying Reynolds 
number). In our bifurcation studies, the parameters determine the geometry. This makes it difficult 
to compare flow fields at different angles and thus to compute a POD basis capable of approximating 
these flow fields. To address this issue, we transform the diffuser geometry to the "standard" geometry 
of a channel flow. Thus, the parameters enter the (transformed) governing equations while keeping 
the geometry and the boundary conditions fixed, enabling the analysis of a combined set of flow fields 

using a POD basis. 
For more details, please refer to [c2jl]. 



Chapter 2 

Nonlinear model validation and 
parameter identification 

2.1    Nonlinear model validation and parameter identification for sys- 
tems wi+h complex dynamics using long-term statistics of data 

2.1.1 Introduction 

In [J2,c8] we presented a formalism for comparing the asymptotic dynamics of dynamical systems with 
physical systems that they model. There is often no need for the detailed (trajectory-wise) comparison 
of a dynamical system and the physical system that it models, but only comparison in statistical sense. 
For that purpose, invariant measures are typically considered. But, invariant measures usually can 
not be observed directly in an experiment. Thus, we base our formalism on time-averages obtained 
from a single observable in the spirit of Takens embedding theorem. In particular, we constructively 
proved that, generically, a single observable is needed in order to recover an invariant ergodic measure. 
Pseudometrics on space of dynamical systems can be defined using this formalism in order to compare 
their statistical behavior. We also identified the need to go beyond comparing only invariant ergodic 
measures of systems and introduce an ergodic-theoretic treatment of a class of spectral functionals 
that allow for this. We discussed the extension of this theory to stochastic dynamical systems. 

Both the concepts of invariant measure and the harmonic average formalism developed here are 
related to spectral properties (in particular, the point spectrum) of the so-called Koopman operator U, 
a linear operator that acts on functions on the phase-space . We stress that in this context questions 
of identification or validation of asymptotic properties of nonlinear finite-dimensional systems with 
complex dynamics is transferred to questions of identification or validation of a linear, albeit infinite- 
dimensional Koopman operator. Here we analyze only the point spectrum of that operator. Our hope 
is that some of the methods developed in control theory of linear systems can be used to study these 
issues further. 

The ideas introduced in [j2,c8] can be used for parameter identification and model validation of 
stochastically driven nonlinear models with complicated behavior. 

2.1.2 Example: Parameter identification of a reduced-order nonlinear combustion 
model with noise using data from a feedback control experiment 

As an illustration we provided an example in which we compared the asymptotic behavior of a combus- 
tion system measured experimentally with the asymptotical behavior of the model that is a stochastic 
control dynamical system. 
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Figure 2.1: Control phase ramp experiment. Estimates of magnitude and frequency of pressure oscil- 
lations recorded. Uncontrolled mean magnitude level indicated. 
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Figure 2.2: A model of a controlled combustion process 

we present an example of using a finite number of functionals evaluated on trajectories to identi- 
fication of parameters of a model describing a UTRC combustion rig operating close to an unstable 
condition associated with a low equivalence ratio condition. In an experiment a feedback loop has been 
closed around the combustor with a phase-shifting controller. The control phase has been varied and 
a time trace of pressure has been recorded. As the phase varies, both attenuation and excitation of the 
pressure oscillations have been observed. A simple model of the controlled combustion process consists 
of a linear plant, controller, a saturated actuator, and a driving broad-band stochastic disturbance. 
The linear model of the has been identified from an experimentally obtained frequency response. The 
model has a form of a lightly damped 2nd order system with delay. An analysis of the linearization of 
the system in the origin indicates that the linear eigenvalues of the closed-loop system can be moved 
away or towards the imaginary axis on the complex plane. In particular, it is possible to move the 
eigenvalues to the right-half plane. In this case, the oscillations would grow and settle on a limit-cycle, 
as the actuator saturation prevents an unbounded exponential growth. As one adds the strong driving 
disturbance in the model, an exact analytical study of the behavior of the system is no longer possible. 
One can still run a numerical simulation and compare the results with experiment. We assume that 
the disturbance driving the combustion model is a white Gaussian process with standard deviation a. 
By adjusting the standard deviation of the disturbance and the value of delay one can qualitatively 
reproduce the results of the phase ramp experiment in a simulation. In what follows the delay of 
the plant T and the standard deviation of the disturbance a will be varied to match the results of 
experiment with closed loop control for several values of control phase. We will define a measure of a 
good fit by evaluating several long term statistics and combining them with some weights into a one 
number. 

For each of the eight values of the control phase from the set (-165, -120, -75, -30, 15, 60, 105, 150) 
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Figure 2.3: A control phase ramp obtained from a model simualtion. 

Figure 2.4: Comparison pf PSDs and distributions of pressure for control phase 9 = -30. Light lines: 
from experiment. Dark lines: from model simulation. Left: for r = 0.006 and a = 1. Right: for 

r = 0.006 and a = 3. 

(in degrees) we chose a time interval containing about 0.5 seconds of pressure data (1024 samples of 
pressure sampled at 2000Hz) corresponding to a constant control phase. 

Below we show the time traces, phase portraits, distributions, and PSDs of pressure for control 
phases 9 = -30 and 9 = 150 from experiment and from model simulations for delay r = 0.006 and 
for two diffrent values of the standard deviation of the disturbance: a = 1 and a = 3. The control 
phases 9 = -30 results in a supression of the pressure oscillations. The corresponding closed-loop 
model is a stable, disturbance driven system. On the other hand, the control phase 9 = 150 results 
in an enhancement of oscillations.  The model analysis without disturbance predicts a limit cycling 

behavior. 
To visualize the discrepancies between the data from the model simulations and from the experi- 

ment, we present the PSDs and distributions of pressure from both models (darker line) on the same 
plot with the experimental PSDs and distributions (lighter lines).    We can see that the lower value 

Figure 2.5: Comparison pf PSDs and distributions of pressure for control phase 9 = 150. Light lines: 
from experiment. Dark lines: from model simulation. Left: for r = 0.006 and a = 1. Right: for 

T = 0.006 and a = 3. 
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of the standard deviation of the disturbance a in the model leads to an underestimation of the pres- 
sure oscillation level in experiment for both control phases. We also observe that the distribution of 
pressure in the data from the model simulation for high value of standard deviation resembles the one 
from experiment better than the data from the low disturbance model simulation. 

To quantify the discrepancies of the data from experiment and model simulations we would like 
to choose some quantities that describe the average frequency of the oscillations, the average size of 
the oscillations, and somehow distinguish a disturbance-driven limit cycle from a disturbance-driven 
stable system. With this goal in mind, for each time interval corresponding to a given control phase 
6 we calculated the following measures of the long term statistics: 
1. The mean frequency of the pressure oscillations. 
2. The standard devotion of the frequency pressure oscillations. 
3. The standard s deviation of the pressure signal. 
4. The ratio of pressure measurements in the interval [-s/2 s/2] to the number of all pressure 

measurement in a given time interval. 
(In the sequel we will refer to these measures as the long term statistics). 

The mean frequency and the standard deviation of the frequency of pressure oscillations has been 
calculated from the Power Spectral Density of the pressure signal. The mean frequency of the pressure 
oscillations and the standard deviation of the pressure signal are of obvious interest. For a stable linear 
system the standard deviation of the frequency is a measure of the damping of the system. The ratio 
of pressure measurements in the interval [-s/2 s/2] to the number of all pressure measurement in 
a given time interval was chosen to distinguish between a disturbance-driven stable system from a 
disturbance-driven linearly unstable, limit-cycling system. As we will see, on the stable side this value 
is typically around .35-.4, while on the unstable side it drops below .3. 

A measure of a discrepancy of the statistics from experimental data and model simulation was 
obtained by taking the absolute value of the difference of the statistics and dividing it by the value 
of the statistic for the experimental data. A mean value of this relative measure for all eight control 
phases is called in the sequel a relative error for a given statistic. 

From the four relative errors we construct a total error measure by adding the four relative errors 
with the following weights: 
1. The weight for the mean frequency of the pressure oscillations. 0.3 
2. The weight for the standard deviation of the frequency pressure oscillations. 0.1 
3. The weight for t^c standard s deviation of the pressure signal. 0.4 
4. The weight for the ratio of pressure measurements in the interval [-s/2 s/2] to the number of all 
pressure measurement in a given time interval. .2 

The values corresponding to the lowest total relative error of 0.09321 are r = 0.006 and a = 3. The 
comparison of the long term statistics from experiment and model simulation for this case is shown 
in Figure 2.6. Note that the long term statistics introduced in this section to select a combustion 
model that best matches data were chosen in an arbitrary manner, to measure various features that 
were considered of merit. The results of this paper were not a necessary for being able to pick certain 
statistics in this particular example. What we would like to stress here is that all these different and 
somewhow unrelated statistics are constructed as certain functionals defined on recorded trajectories 
from an experiment and from a model simuation. The results of this paper provide a new insight into 
what is the precise mathematical meaning of often ad hoc chosen measures of a distance between two 
dynamical systems. 

A single peak in PDF of pressure indicates a stable driven system. Double peak indicates a noisy 
limit cycle. An alternative method of distinguishing whether a model that is a noise-driven stable 
system or a noise-driven limit cycling system better mathces experimental data is presented in [36]. 

The method proposed in [J2,c8] became a standard method for validation of reduced order models 
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Figure 2.6: Long term statistics from experiment and model simulation for r = 0.006, a = 3. 

of combustion instability used at UTRC. In particular, the method was used in an internally funded 
combustion programs for model validation and parameter identification a single-nozzle rig model. 
Figure 2.7 shows comparison of Power Spectral Density and Probability Density Function of the 
pressure data from experiment and model simulation. Moreover, the method has been applied to 
identification of a reduced order model of combustion instability in an advanced military engine and 
to distinguish regions of validity of stable driven and limit cycling models of military aeroengines and 
industrial gas turbines. The method can be also used for validation of reduced order models of shear 

flows. 

2.2    Nonlinear model validation using frequency reponse data 

In [c4] we presented a model validation problem using a frequency response data, motivated by the 
modeling of a combustion process at UTRC. The system excitation was well modeled by a stochastic 
source and this dominated the response. The number of data points that must be recorded to capture 
the system behavior precluded the use of time-domain model validation techniques. A critical analysis 
of the results of the linear model validation indicated the limitations of the linear model validation 
techniques in the context of nonlinear feedback systems. The need for new model validation tech- 
niques that take into account nonlinear model perturbations and the effect of the driving broad band 
disturbance was indicated. 

Frequency response measurements of UTRC single nozzle rig combustor were taken in both open- 
loop and closed-loop configurations using swept-sine experiments. The results of these experiments 
are shown in Figure 2.8. In both cases a very good fit to the response was obtained with a stable 
linear transfer function consisting of a 2nd order system with delay. 

The nonlinearity assumed in the model did not manifest itself by distorting the experimental 
frequency response estimates. As a consequence, it is natural to quantitatively investigate the extent 
to which a linear model—with a norm bounded perturbation—can describe the system behaviors. 
Such a model structure is illustrated in Figure 2.9. 

Both linear and nonlinear models contain bounded perturbations, which allow each to describe 
a set of behaviors. This structure is commonly used in robust control and provides a degree of 
robustness with respect to the designer's uncertainty about the true range of system behaviors. Given 

12 
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Figure 2.7: Results of model parameters fitting using statistics of data from experiment and model 
simulation. 
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experimental input-output data, model validation techniques provide a means of comparing the ability 
of each model to account for the observed experimental data 

whi^1HheK°bSeiJe<! ?Td"l00P reSP0DSe SPPeared Unear' [t WaS «S^antly different from that 
wh ch could be predicted from the open-loop model. In the closed-loop response the resonant peak 

F^r2
C8)   Thfs        t^^rY? thC damping W3S half that °f the °Pen-l0°P -e <»* t0 

Figure 2.8). This was true even though the pressure oscillations in the rlosed-loop case were half those 

dalwT     P SltUatT' ^ ^JT "^ °f the COntro1 d6Si^ indicate* t^t we would expect the damping to increase under closed-loop control. 
An interpretation of this unexpected behavior can be made based on the nonlinear model as follows 

A strong driving noise adds to the sinusoidal driving signal at the input of the nonlinear function and a 
large portion of the saturated part of the function is visited. In a closed-loop experiment the controller 
reduces the size of the disturbance and less of the saturated portion of the nonhnear function is vSd 
Effectively, the nonlinearity provides a higher gain to the sinusoidal signal and hence the positive 
feedback m he internal loop is stronger. This manifests itself as a higher resonant peak and lower 
damping m the linear model fit to the combustor frequency response in the closed-loop experiment 
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Figure 2.9: Lineax perturbation model of the combustion process 

Figure 2.10 illustrates a model structure capable of reproducing the observed behavior. 
The closed-loop system, illustrated in Figure 2.10, has been simulated and used to obtain the 

simulated frequency response measurements shown in Figure 2.11. The simulation is a very good 
qualitative match to the observed experimental behavior: the damping ratio of the oscillatory mode 
is reduced in both the closed-loop model simulation and experiments. 

2.3    Nonlinear model identification using frequency reponse data 

2.3.1    Introduction and problem formulation 

In papers [J7,cl3], we propose a describing function based procedure for identifying the shape of the 
nonlinearity in the thermoacoustic feedback loop. We describe the procedure in two cases: 

1. where no driving noise is present and the system is either stable or in self-sustained limit cycling 
oscillations and 

2. where Gaussian driving noise alone is present and limit cycle is absent. 

In the case where no driving noise is present, we show that the nonlinearity shape may be recovered 
by using experiments with feedback control where the control is used to vary the amplitude of the 
limit cycle from zero to the maximum value. At each fixed amplitude, standard linear identification 
is used for identifying the harmonic balance gain. These gains are then used to determine tl i shape 
of the nonlinearity function. 

In the case where Gaussian driving noise is present, a procedure is proposed whereby an external 
controller is used to manipulate the variance of the Gaussian noise seen by the nonlinearity. At each 
controller setting, small amplitude sinusoidal forcing is used to determine the harmonic balance gain 
(in this case, for the Gaussian noise). The shape of the underlying nonlinearity is recovered from these 
harmonic balance gains. 

A simplified version of UTRC combustion model of a premixed combustion process is an intercon- 
nection of a linear lightly damped oscillator, delay, and a saturating nonlinearity in a feedback loop. 
Figure 2.12 gives the block diagram schematic of the combustion model. The oscillator represents the 
acoustic waves in the combustion chamber. The delay represents the time it takes the fuel and air 
to mix in a premixing nozzle, transport to the flame front, and react. The saturating nonlinearity 
represents the dependence of a heat release rate on the fuel to air ratio at the flame front. The feed- 
back loop represents the effect of oscillations of air mass flow in the nozzle on the fuel to air ratio and 
hence on the heat release rate. The delay is such that the internal feedback loop provides a positive 
feedback around the oscillator. Only the output of the oscillator (pressure) is accessible for measure- 
ment. Depending upon the experimental conditions, a strong broad band disturbance (representing 
turbulent velocity fluctuations) may be driving the system at the input of the linear oscillator. The 
control input (representing fuel modulation) adds to the disturbance input. 
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Figure 2.10:  Nonlinear model structure matching the observed closed-loop experimental frequency 
responses. 
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Bode plots of pressure over actuator command from a model simulation 
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Figure 2.11: Open- and closed-loop frequency responses generated by the nonlinear model simulation. 
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Figure 2.12: Nonlinear model's block diagram 

The nonlinear identification objective is to obtain the shape of the heat release nonlinearity by using 
the control and/or the external forcing (see Figure 2.12). For the purpose of this note, it is assumed 
that the linear dynamics (acoustics and delay) have already been obtained using a frequency response 
test and are known. Additionally, we impose a special structure on the heat release nonlinearity as 
described by the following definition. 
Definition. The heat release nonlinearity h{u) is a static function of its input u such that the following 
three requirements are satisfied 

1. MO) = 0, 

2. h is a non-decreasing odd function (h(—u) = — h(u)) and 

3. For u > 0, h(u) is a concave function, i.e. 

h{Xu + (1 - X)v) > Xh(u) + (1 - X)h(v). (2.1) 

For such a non-linearity and for u > 0, we have 

fc(Au)   >   Xh{u),    0<A<1 

Xh{u)    >   h{Xu),     X > 1. 

(2.2) 

(2.3) 

We will have the need to use these inequalities in certain proofs to follow. A relay nonlinearity is an 
example of heat release nonlinearity. 
Remark. If additionally, h is assumed to be a C1 function then the requirement (3) in the definition of 
the heat release nonlinearity can be shown to be equivalent to the derivative h! being a non-increasing 
function of its argument. 
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2.3.2    Identification without noise 

In the absence of noise, harmonic balance for the limit cycling system yields the sinusoidal describing 
function gain 

1     r2* 
NA = -=-r       h{Asin{e))sin{0)d9 (2.4) 

wAJo 
for the static nonlinearity h where A represents the amplitude of the sinusoid at the input of the heat 
release nonlinearity.  This sinusoid may arise either due to the external forcing or due to the limit 
cycling oscillations. In the limit cycling case, the loop equation 

l + NAG0{iu)e-liuT)=0 (2.5) 

needs to be additionally satisfied. In this section, we do not consider the case where both the forcing 
and limit cycle oscillations are present. 

If the thermoacoustic system is non limit cycling and the presence of the sinusoidal forcing does not 
cause the system to exhibit limit cycling behavior then harmonic balance may be used together with the 
sinusoidal forcing to estimate the feedback gain due to the nonlinearity (at a fixed forcing amplitude). 
By estimating this gain for many forcing amplitudes, the harmonic balance gain is computed for 
different amplitudes at the nonlinearities input. 

If the thermoacoustic system is limit cycling then the same procedure is applied but this time with 
an external controller. The controller is gain and phase adjusted to tune the amplitude of the limit 
cycle. The harmonic balance gain is now evaluated at the different limit cycle amplitudes. 

To compute the nonlinearity shape from these gains identified using linear techniques, we arrive 
at the operator equation 

g(A) = Lh(A) = - /    h{Asin(6))sin{e)de (2.6) 
7T Jo 

which needs to be solved to determine the shape of the nonlinearity. For the heat release nonlinearity 
(see definition in section 2.3.1), this equation is invertible and the inverse is given by 

oo 

h(A) = Y,Mng(A) (2.7) 
n=0 

where the operator 
M = I-L. (2.8) 

The proof that the series actually converges for the heat release nonlinearity requires ||M|| to be less 
than 1. This follows because 

Mh(A)   =   (I-L)h{A) 
=   h(A)-Lh(A) 

=   - f * h{A)sin2(e)d9 - - I * h{Asin(6))sin(e)d6 
7T Jo It Jo 

=   - /** [h{A)sin(6) - h(Asin{e))] sin(e)d6 (2.9) 
7T Jo 

because h is assumed to be an odd function. Finally, because h is concave, we use the inequality (2.2) 
to estimate a bound for the operator as 

2   r2* 
\Mh{A)\   <   -        [l-sin{9)]h(A)sin{6)de 

7T Jo 

=   (--i)M^)- (2-10) 
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We thus have a bound on the operator norm of M as 

||M||<(--1)<1. (2-11) 

A Matlab code has been written to compute the terms in the series iteratively (see Appendix). The 
series representation of the inverse also allows one to obtain bounds on the error. For example, a relay 
type nonlinearity 

h{A)   =   b,      A>0 

=   -6,      A<0 (2.12) 

yields through a harmonic gain analysis NA = ^ or equivalently 

1   r2* Ah 
g(A) = - /    bsin{9)de = —. (2.13) 

■x Jo it 

The computations are then easily performed to recover the shape of the nonlinearity. The O(0) 

computation yields 

h°(A) = g(A) = - = 1.27236 (2.14) 

with relative error bounded by 

1^1 < ||M|| < (1 - 1). (2-15) 
\\h\\ 7T 

The 0(1) computations yield 

h^A)   =   g(A)+Mg(A) 
46     2   [*\4.b  .   ...     461   . — 1- _ /      _sm(0) sin{6)d9 
■K 7T JO     ITT 7T J 

=   0.92536 (2-16) 

with relative error bounded by 

nrnr < ll^ll2 < (- -1)2 = °-0747- (2-17) \\h\\ 7T 

Similarly relative error for 0(2) compuations is bounded by 0.0204 and so on. 

2.3.3    Identification with noise 

In the presence of Gaussian noise, the random input describing function framework is used to do 
harmonic balance. Throughout this section, we assume that limit cycle is not present and the harmonic 
balance due to the noise alone accounts for the signals in the loop. If the variance of the signals at 
the input and the output of the nonlinearity is known, the operator equation 

g(a) = Lh{a) = 4= T K^se^^ds (2.18) 
V 27T J—oo 

needs to be solved to obtain the nonlinearity shape h. For the heat release nonlinearity, the solution 
may again be obtained in a series form 

00 

h(a) = Y, Mng(a) (2-19) 
n=0 
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where the operator 
M = I-L. (2.20) 

For the heat release nonlinearity (see Definition in section 2.3.1)), the inequalities (2.2) and (2.3) may 
be used to carry out an analysis similar to the one described in previous section to show that 

\Mh{a)\   =   \\ß r[h{a)s-h{as)]se-s2l2ds\ (2.21) 
V 7T Jo 

< \JI fl [h(a)s _ h(as)] se-s^2ds\ + \yß J°° [h(cr)s - h(as)) se-s^2ds\ 

< |!^yi ff\i _ s)se-°2/2ds + J°°(s - l)se-s^2ds^j 

=   0.435||/i|| 

< l\\h\\. (2.22) 

For the relay type nonlinearity, the harmonic balance gain NR = y |£ and equivalently 

5(a) = -L=r bse-s2'2ds = —b. (2.23) 
\J1-K J-oo K 

The series evaluation for the inverse then gives 

h°(a)   =   g{a) = — 6 « 0.86, (2.24) 

hl(a)   =   g(a) + Mg(<r)zi0.m. (2.25) 

with corresponding relative errors bounded by 0.435 and 0.189 respectively. 
In combustion applications the variance of the signals both at the input and the output of the 

nonlinearity is not known (as heat release rates can not typically be directly measured). As a result, 
the procedure described above may not be directly applied. In the following paragraphs, we describe 
a procedure for estimating the heat release nonlinearities random input describing function gain by 
using small magnitude sinusoidal forcing. Before describing the procedure, we state a key result which 
makes the estimate fe"isible. 
Result For a heat rcljase nonlinearity, the random input describing function gain 

NR(a)= KmNA(e). (2.26) 
i4->0 

If the function h is additionally C1, this gain is given by 

NR{(T) = -±= f°° h'{as)e-^^ds. (2.27) 
V27T J-oo 

Proof. We first assume the function h to be C1. The random input describing function gain (in the 
absence of any limit cycle oscillations) is given by 

jVÄ(a, A = 0) = -J=r ^s^l2ds. (2.28) 

Using integration by parts, we may express the right hand side as 

NR   .       1    M££)e-,V2 "   +    1     /"».(„,.-*/»„, 
V2ir     o -oo      y/2ir J-oo 

=    -U f° h'{as)e~s^2ds. (2.29) 
v27T J-oo 
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This gain needs to be estimated using sinsuoidal forcing. The sinsusoidal describing function gain (in 
the presence of noise of variance a) 

O flit TOO 2 /o 

NA{o,A)= {2f3/2AJo    d6 J_Jsh{Asin{e) + os)sin{B)e-* l\ (2.30) 

Since /0
27r sin(9)d8 = 0, we may write this gain as 

NAM = ^jyjy^ + ^-^sinme;^. (2.31) 

Now applying Dominated Convergence Theorem we have 

lim^(a,A)   =   77rrm        M        ds h'(aS)Sin2(e)e~s '2 

=   4=r h'(as)e-s^2ds, (2.32) 
V 27T J—00 

The equations (2.29) and (2.32) together give the result for a C1 nonlinearity. For arbitrary bounded 
nonlinearity function h, we simply approximate the nonlinearity by a sequence of C1 functkus which 
converge (in a pointwise sense) to the function h and apply DCT to obtain the result. 

The significance of the result is that the random input describing function gain may be estimated 
by carrying out a frequency response test with vanishing sinusoidal signal amplitude. Of course, for a 
system forced with very large bandwidth noise, one would get in to problems related to SNR so any 
estimate of the noise gain NR would necessarily be biased. 
Remark. The exact expression for NR, the random input describing function gain also shows that as 
the variance a of the Gaussian noise at the input of the heat release nonlinearity decreases, the gain 
NR(CT) increases. 

The random input describing function gain is estimated by using a frequency response test. A 
feedback controller is used to manipulate the variance of the Gaussian noise seen at the input of the 
heat release nonlinearity. For each setting of the controller, a sinusoidal input is used to estimate 
the random input describing function gain NR and this together with the variance computed from 
the time series is used for estimating the variance of the signals at the input and the output of the 
nonlinearity. By procuring these variances at different control settings, sufficient data is obtained to 
apply the procedure to compute the nonlinearity shape. 

2.3.4    Simulations 

A simulink model was used to build a mathematical model for the combustion block diagram described 
in Figure 2.12. We describe two simulations which were carried out to demonstrate the procedure 
described in sections 2.3.2 and 2.3.3. 

First, we consider the no noise case. In the absence of noise, the combustion is unstable and a 
limit cycling system. The controller is used to vary the linear dynamics of the loop and the resulting 
amplitude of the pressure time series oscillations and the control input time series oscillations observed. 
These two amplitudes together with their phase differences and information on the linear dynamics 
present in the loop are used to estimate the amplitude information at the input and the output of the 
nonlinearity. These estimates are then used to estimate the nonlinearity shape. Figure 2.13 compares 
the actual nonlinearity with the one obtained from the experiment. 

Next, we consider the case where a strong Gaussian noise component is present. In the absence 
of control, Gaussian noise balance accounts for the signals in the thermoacoustic loop (actually, a 
small limit cycle is present - see Figure 2.15). The control is used to manipulate the variance of the 
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Nonlinearity shape x (exact) and o (estimate) 

Figure 2.13: Estimate of the nonlinearity from the harmonic gains - limit cycling case 

signal as seen at the input to the nonlinearity. A small amplitude forcing may be used to estimate 
the nonlinearity gain at each control setting as described before. The objective of this forcing test is 
to estimate the random input describing function gain. However, we have not been able to succesfully 
carry out this portion of the simulation yet. 

Instead, we use the signals at the input and the output of the nonlinearity directly to estimate the 
harmonic balance gains. Figure 2.14 compares the nonlinearity shape estimated with this procedure 
versus the actual nonlinearity. The error between the two is due to the fact that the input and the 
output signals are not pure Gaussian signals rather are a combination of Gaussian and a sinusoidal 
limit cycle. Figure 2.15 plots the PDF (histograms) for the pressure time series. A single peak in PDF 
of pressure indicates a stable driven system. Double peak indicates a noisy limit cycle. For stabilizing 
control action (positive control gains), the signals are Gaussian and the PDF does not display any 
limit cycle component while for destabilizing gains(negative control gains), the limit cycle becomes 
prominent. 

If one were to blindly treat the signals as Gaussian (as we have done here), the variance estimate is 
biased and the harmonic balance gains thus derived are incorrect. By the nature of the procedure, the 
error is larger for large a where the control is most destabilizing (and hence the limit cycle component 
is the largest). A partial fix to this problem is to use Prabhir's algorithm to isolate the a for the 
input and the output signals and use these instead. This will provide an improved estimate of the 
nonlinearity shape if the limit cycle amplitude is not significant. 

However, a complete solution of the problem where both the limit cycle and the Gaussian noise 
components are together present requires an identification algorithm which incorporates the multiple 
input describing function. Though, this will be subject of future work, next section discusses some of 
the issues. 

2.3.5    Limitations of the identification procedure 

The available control authority fundamentally limits the identification of the nonlinearity. In the 
simulations provided here, unlimited control authority was assumed. However, the effect of limited 
control authority for the Gaussian noise and the limit cycling cases are fundamentally different. 

For the limit cycling case, if one has information on harmonic balance gains for limit cycle ampli- 
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Figure 2.14: Estimate of the nonlinearity from the harmonic gains - Gaussian noise case 
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Figure 2.15: PDF of the pressure time series (input to nonlinearity) for different control gains - positive 
control gains are stabilizing and negative destabilizing 
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tudes from 0 to A then one can (in theory) identify the nonlinearity shape for all values of input from 
0 to A with out any error. This is because of the nature of the operator M in the case of limit cycling 

(or sinusoidally forced) systems. 
For the noise driven system however, in order to identify the nonlinearity precisely at any input 

level, information on harmonic balance gains from 0 to oo is required. This information is impossible 
to obtain from any realistic experiment. In any practical implementation of the procedure, the data 
points outside the range available are interpolated to recover the shape of the nonlinearity. As a result, 
any identification with Gaussian noise is necessarily prone to errors. 

Finally, we discuss the problem where both the limit cycles and the Gaussian noise are together 
present. The problem there is to back out the nonlinearity shape from informations on NR and NA 

(the harmonic balance gains for the noise and limit cycles respectively) together with assosci^ted a 

and A. 
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Chapter 3 

Control of non-equilibrium behavior in 
aeroengines 

3.1    Control of planar limit cycles 

This section is an extended abstract of results presented in paper [c3]. 
There are numerous examples of systems where oscillations are attributed to stable limit cycles. 

Reduced order models of combustion instability [93] and compression system dynamics [37] are in this 
category. The control goal is to reduce the size or elimination of the limit cycle. One group of methods 
for control design are linear methods for damping augmentation of the unstable origin. The methods 
are essentially the same as the ones for damping augmentation of the stable linear systems. With 
large control authority the origin can be stabilized globally and the limit cycle will be eliminated. 
With small control authority the region of attraction of the origin will be extended, but the limit cycle 
will persist, possibly modified. In general, one cannot claim that the locally stable limit cycle will be 
reduced in size, even though this it typically expected. In fact, one can construct examples where the 
control action that extends the domain of attraction of the origin actually increases the size of the 
locally stable limit cycle. 

In the case of limited control authority, when the elimination of the limit cycles is impossible, a 
control design aimed at reducing the size of limit cycles usually involves approximate methods based 
on harmonic balance (cf. describing function methods) where the controller is designed using the 
harmonic balance equation. 

In paper [55] we investigated alternative methods of reducing the size of large limit cycles using 
control in the case of limited authority. We consider a planar nonlinear oscillatory system with 
bounded control. It is shown that under weak assumptions one can identify the controller that shrinks 
the existing limit cycles and maximizes the domain of attraction of the origin. Away from a small 
neighborhood of the origin, the optimal control action results in switching between the positive and 
negative saturation values. The switching happens on the curve where transverse linear controllability 
is lost and a collection of vector fields df Ining the local control properties of the system change 
orientation.We briefly compared the optimal approach to controllers suggested by a number of well 
known approximate techniques. 

The control concepts are illustrated using the Greitzer compressor surge model. In the situation 
when the throttle is set so that the uncontrolled system exhibits a surge cycle, a control via small 
throttle variation can reduce or eliminate the surge cycle. It is also shown that in the case of the surge 
model the controller that locally minimizes the rate of divergence from the origin (in the given metric) 
is not optimal in the sense of convergence to a smallest possible periodic orbit. 

We illustrated the results on Greitzer compressor surge model. Figure 3.1 shows the uncontrolled 
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Figure 3.1: Uncontrolled and controlled surge cycle 

and controlled surge limit cycles when the optimal control is used. 

3.2    Adaptive control of combustion instability 

Adaptation of control algorithm parameters to optimize the performance was demostrated at UTRC 
in combustion instability and in diffuser flow separation control. AFOSR-sponsored research played 
an important role in this development. Details are presented in papers [cl0,c5,c7j4]. 

Experiments and model-based analysis of combustion instability determined that pressure mea- 
surement and a simple phase-shifting algorithm with an appropriately chosen control phase is sufficient 
for suppression of oscillations, given enough control authority ([81, 82, 69, 94, 88, 96, 63, 70, 53, 54]). 

The goal of using active combustion instability control on a gas turbine engine is to keep pressure 
oscillations at an acceptable level over a large range of operating conditions, without a perfect model 
of the process dynamics. Model based analysis determined that minimum information needed to cal- 
culate the best control phase for the combustion instability control requires estimation of parameters, 
including transport delay (or at least the corresponding phase shift), that are hard to obtain from 
pressure measurements alone [70, 53, 54]. Even if this difficulty could be circumvented, the sensitivity 
to modeling errors was likely to be high. 

Need for developing an algorithm that would allow finding the besi phase with minimum amount 
of a priori information that would work over large range of operating conditions and with minimum 
model assumptions seemed apparent. The operating conditions include fast engine acceleration and 
deceleration transients. 

The algorithms developed at UTRC and presented in [56, 59, 60, 109] allow fast automatic tuning 
of control parameters and (under reasonable assumptions) can be guaranteed not to amplify the 
oscillations. Two extremum-seeking algorithms [98, 99, 78] have been selected for the tuning of the 
control phase. Model analysis indicated that the combustion process can include a simple pressure 
magnitude dynamics and fast stable dynamics describing other elements of combustion process and 
actuator dynamics. When an extremum-seeking algorithm is applied to such a model, it is possible 
to guarantee both convergence of the control parameter to the optimal value and the stability of the 
overall system. The analysis uses only the fact that the variable to be minimized (in our case the 
pressure magnitude) has an almost static dependence on the control parameter. The stability proof is 
possible if one exploits the time scale separation between the slow dynamics of the control parameter 
update law and the fast dynamics of pressure magnitude. There was a technical challenge in finding a 
phase shifting mechanism that works for pressure oscillations varying over large frequency range and 
in developing a reliable pressure magnitude detection mechanism. This challenge has been overcome 
with a frequency tracking observer algorithm (based on Extended Kaiman Filter described in [83]) 
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that allows for fast and reliable estimation of the in-phase and quadrature components of the bulk 
pressure mode over large range of frequencies. 

Performance specifications for extremum-seeking algorithms have been defined for algorithm ini- 
tialization transients and engine acceleration transients. When initialized with a phase corresponding 
to amplification of oscillations, the algorithms should quickly produce and maintain phases corre- 
sponding to suppression of the oscillations. In the engine acceleration transients the algorithms should 
be able to suppress oscillations relative to uncontrolled levels. 

Experiments with an extremum-seeking adaptive scheme were conducted on a 4MW single nozzle 
rig at United Technologies in August 1998. The control gain was fixed and only the control phase has 
been updated. One of the algorithms relied on estimation of the derivative of the pressure magnitude 
with respect to control phase by introducing a small sinusoidal variation in the control phase and 
measuring the response of the pressure magnitude at the corresponding frequency. The mean control 
phase was incremented by an amount proportional to the estimated derivative. 

Initialization transients were introduced where the initial control phase varied significantly from the 
optimal one. The algorithms behaved very well at high power condition (small pressure oscillations 
and medium level of broad-band disturbance) and reasonably well at low power conditions (large 
pressure oscillations and large level of broad-band disturbance). Once reaching a neighborhood of 
the optimal value, tb-: control phase usually stayed in a reasonably small neighborhood of that value, 
rarely produced control phases corresponding to level higher than uncontrolled levels, and always 
provided better average pressure oscillations levels than uncontrolled levels. Figure 3.2 shows typical 
performance of the algorithms.  Some control experiments were conducted with the sole purpose to 
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Figure 3.2: Extre:r.iim-seeking experiments: initialization transients. The initial control phase is 
strongly destabilizes. An optimal stabilizing phase is reached within three seconds. 

identify the pressure magnitude dynamics and the noise to obtain a simple model of the slow part of 
the combustion process. This research was supported by the AFOSR grant. The model obtained at 
UTRC by Kartik Ariyur working under direction of Andrzej Banaszuk was used to study the adaptive 
algorithms off-line [60] and simulate fast engine transients that could not be introduced in the rig 

[56, 59]. 
A detailed model-based analysis of the adaptive algorithm based on averaging was conducted by 

Miroslav Krstic from UCSD and his student, Kartik Ariyur. This analysis provides two linear models, 
one for tracking reference changes and the other for sensitivity to noise, which offer insight into how 
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different parameters influence the performance [79, 60]. Details are presented in papers [cl0,c5,c7j4]. 

3.3    Control of vortex motion and chaotic advection 

3.3.1 Introduction 

This section is an extended abstract of the work described in detail in [c9 j3]. 
In the last two decades, much progress has been made in employing dynamical systems theory 

to laminar mixing [1, 2, 46, 48]. In much of this work the emphasis has been on understanding the 
mechanisms of mixing in laminar flows. For ex<*mple Melnikov theory and associated lobe dynamics 
have been used to study transport and mixing in and out of the recirculation bubble of the vortex 
Batchelor couple in a pioneering study of Rom Kedar et al [47]. Those mechanisms are now well- 
understood in two-dimensional flows and partially in three-dimensional flows. In AFOSR-sponsored 
paper [44] we pursued a related question of optimizing and controlling transport and mixing in two- 
dimensional flows. Akin to first chaotic advection studies we chose a simple vortex model - a single 
vortex in a corner subject to a potential field. The motivation for the present study comes from 
studying flows in a combustor. (Vortex models have been used before for this purpose [31], but 
without forcing.) 

In the absence of time-dependent forcing (introduced by modulating the potential field) the vortex 
wass either at a stable equilibrium position or was moving on a periodic trajectory in the plane. The 
first question that we asked was: if we allow for the arbitrary time-modulation of the potential field, 
can we move the vortex from an arbitrary initial position to an arbitrary final position in the plane? 
The answer to this question is shown to be positive using the transformation to the so-called flat 
coordinates [43, 18]. Having this result, we could proceed to search over all the trajectories of the 
vortex in a bounded domain of the plane and determine the optimal one with respect to a suitable 
measure. We chose this measure to be the flux through the heteroclinic orbit connecting two stagnation 
points of the partivcle dynamics (called separatrix), thus linking control theory and chaotic advection 
theory. Once the optimal trajectory was found, we stabilized it using a feedback law. The search 
for the optimal trajectory was pursued here using the numerical simplex method. Finally we showed 
that the problem presented here could be put in the context of Pontryagin maximum principle which 
provides a necessary condition for an optimal trajectory without utilizing the transformation to flat 
coordinates. 

The results apply to the case of single vortex motion in an arbitrary domain driven by a potential 
velocity field with streamfunction tye. 

For more details see [c9j3]. 

3.3.2 Flattness-based control of vortex motion in a combustor recirculation region 

The equations of motion for the vortex are given by 

oyv oyv 

•     =       a*     c(t)d*c 

d xv d xv 

where e(i) is the control input. The streamfunction of the control field can again be chosen as a flat 
coordinate, z\ = ^c. The other coordinate, zi is chosen such that z\ = zi. Thus, 

dxvdyv     dyvoxv 
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where {*c, *} is the usual notation for a Poisson bracket of functions *c, *. It is easy to see that 

h = {{*c *}, *} + e(t){{*c *}> *c}. 

Thus, the motion of a single vortex in a container of arbitrary shape under the influence of a 
potential field with a streamfunction Vc is locally controllable if 

{{*c,tf},*c}#0 (3.1) 

on the domain.   (Another generalization holds for the case of n vortices under the influence of n 
potential fields. See [44] for details. ) 

In the corner problem the instantaneous flow is determined by the vortex position. Under periodic 
conditions, i.e. at natural or controlled periodic vortex motion, the fluid motion may be characterized 
by the Poincare map x* = $r(z), where x represents the initial position of the fluid particle and x* the 
position one period rper later. At small amplitudes, the Poincare map has (at least) three fixed points, 
one at the origin, one xs on the x-axes and one xu on the y-axis (see Fig. 3.3). The fixed point xs {xu) 
has a stable (unstable) manifold Ws{xs) (Wu(xu)) extending into the domain. The manifolds intersect 
each other infinitely many times near the fixed points [23]. Fixed points and invariant manifolds can 
be shown to be symmetric with respect to the x = y bisector, if the vortex motion has the same 
symmetry and if the initial position of the vortex is on the x = y fine. We define a curve C which 
consists of the sections of the invariant manifolds from the fixed points to the first intersection point 
(Fig. 3.3). For the considered parameters, the curve is nearly circular. The recirculation region R 
shall be defined by the region bounded by the x- and y-axis and C. In the limit of small amplitudes 
R, the curve C converges to the steady state separatrix, except in an arbitrary small neighborhood 
around the fixed point. In the sequel, vortex motion is assumed to be periodic. 

Mixing is associated with the behaviour of an ensemble of fluid particles over a finite period of 
time. A necessary condition for mixing between the free stream and the recirculation region is the 
fluid exchange across C, realizing that the net flux vanishes for incompressible flow. The instantaneous 
rate of fluid exchange is quantified by 

$in$t = Ids \un\ 

where ds represents an arc element of C and un the normal component of the velocity. A suitable 
mixing measure $ may be defined by the flux averaged over one period and normalized with the area 

■*per 

Numerous measures for mixing can be considered depending on the application. Examples are (1) the 
flux according to Eqn. (3.2), (2) the fluid discharge during one period, (3) the size of the mixing region, 
(4) the average residence time of the transient fluid particles in the mixing region, (5) the average 
strain rate, since the strain is related to stretching of material fines and surfaces, (6) the growth rate of 
material fines and surfaces, (7) the average divergence rate of neighboring fluid particles (Kolmogorov- 
Sinai entropy), (9) any measure for the degree of finite-time homogenization of an ensemble of fluids 
particles. In [44] we restricted to a few of these quantities which can be expected to be of importance 
in the combustor. In particular case of the corner flow the lobe of the stable manifold Wa contains 
the fluid which leaves the recirculation region R during the period described by the Poincare' map 
(Figure 3.3). This fluid is bounded by the first intersection point, the WVlobe and the initial Wu 

section. The lobe of the unstable manifold Wu contains the fluid which enters R during the same 
interval. This fluid is bounded by the first intersection point, the Wu-lobe and the initial Ws section. 
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Hence, the intersection of both areas identifies the fluid which enters and leaves during the considered 
time interval, i.e. the area between invariant manifolds connecting intersection points 2 and 3. Thus, 
the total fluid exchange Tper |-R|$ during one period is represented by the areas bounded by C and both 
lobes, Ws, Wu, counting the overlap area twice. The region around the vortex which is embraced by 
both lobes neither leaves nor enters the recirculation zones during the considered period. The embraced 
region can roughly be identified as the trapped region neglecting convection effects due to the thin 
higher-order lobes near the axes (not resolved by present computations). Thus, the Poincare map 
allows to draw many quantitative and qualitative conclusions about the mixing measures discussed in 

[44]. 
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Figure 3.3: Invariant manifolds for the Poincare map of the controlled particles motion 

Figure 3.4 illustrates the concept of using vortex model and methods from control theory and 
dynamical systems theory for control of mixing in the corner flow example. 

For more details see [c9 J3]. 

3.3.3    Observer based control of vortex motion in a combustor recirculation region 

The tracking control developed above postulates the availability of vortex coordinates for feedback. 
To become part of a plausible implementation framework it therefore needs to be complemented by a 
dynamic observer that translates some feasible sensor readings to state estimates. This section briefly 
summarizes aspects of an observer based design. More details are provided in [ell j5]. 

The assumed measurements are of the x-direction fluid velocity, denoted u, at the normalized wall 
point1 (1,0). The following is an explicit expression for u 

u = dy(*av + (1 + e)*c)U=li!/=0 = 0.5(1 + e) - (arg + J + 1)2 _ 4^2 

The component 0.5(1 + e)a adds no information and will be ignored. 

(3.3) 

1 Since oar model does not account for viscosity, the idealization of velocity measurement at the wall is admissible. 
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Analysis of mixing using control and dynamical systems theory tools 

Example: control of mixing in a combustor 

Control theory applied to rortex dynamics model: 

differential flatness of the rortex dynamics allows to create 
and stabilize periodic vortex motion 

Dynamical tyitems theory applied to particle dynamics model: 

geometric properties of Invariant manifold of Polncare map 
determine particle mixing properties 
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Effect of 
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Figure 3.4: Illustration of control of mixing in the corner flow. 

Straightforward analysis (left out) verifies that local linearizations of our system are observable 
almost everywhere, relative to the output u, and that the set (curve) formed by points of lost observ- 
ability are not invariant. Nonetheless, we chose not to attempt to design a global observer. This was 
motivated by the level of nonlinearity of our system (including the vortex model and (3.3) and the fact 
that a global observer would require sensitive, state-estimate dependent gain scheduling. For exam- 
ple, an observer based on the canonical local coordinates (u,ü) [76, 58], would require back-and-forth 
coordinate change {xv,yv) <-r (it,u). Instead we opted for a local but more robust, fixed structure 
observer that will cover a neighborhood about the fixed point to which designated tracking orbits will 
be restricted. This observer will be used in conjunction with the state feedback policy proposed in 
previous section. It will be complemented by a dissipative feedback control, used to drive the vortex 
into the designated neighborhood. The latter does not require a detailed state estimate, and makes 
do with direct feedback of the measurement signal. 

3.3.4    A Dissipative Constant Structure Observer for Small Deviations 

To match the tracking feedback, the suggested observer is written in the flat coordinate system, and 

is thus form 
fi    =   *2 + Ci(«-«) .    . 
z2   =   p + tq + b(ü ~ u) 

where a hat indicates an estimated variable and where Ci are correction terms. The simplest option is 
that of using a constant linear gain - 

(3-4) 

"Ci " = - 
"' Li ' 

L2 
5u « - L2 

[dZlu dzju] 
SZ2 

(3.5) 
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where 8 indicates an estimation error. Using linear, small deviations approximations, the dynamics of 
state estimation errors are then governed by - 

d_ 
dt 

Sz\ 
SZ2 

-Lidziu 1 - LidZ2u 

-jz(l-z%)-L2dZlu   2z2(l + e-±)-L2dZ2u 
5z\ 
Sz2 

(3.6) 

and the selection of gains Li should stabilize this system. 
An intuitive guidance for such selection is based on assuring stability of the frozen time systems: 

it is an obvious fact that systems of the form 

d^ 
dt 

8z\ 
8Z2 

= -a      b' 
-c   -d 

8z\ 
8Z2 

(3.7) 

with (constant) 6, c > 0, a > 0 and d > 0, generates stable dynamics. Direct evaluation reveals that 
the signs of both partial derivatives dZiu are both positive in a neighborhood of the rest point (1,1). 
Following the frozen time intuition, this suggests using L\ = 0 and L2 > 0. 

Since stability of frozen time system neither implies, nor is it implied by stability of the actual, 
time varying system, the latter has to be analyzed. To the very least, such an analysis needs to be 
applied to a periodic linearization, in a neighborhood of the designated reference trajectory. A useful 
tool here is to replace that periodic system by a linear time invariant model for approximate dynamic 
phasors of the error signal. The term dynamic phasors is used in reference to the time varying Fourier 
coefficients of a trajectory that is dominated by a known period T - 

<x>k(t) = ±fx(t + r)e-^t+rUr (3.8) 

Differential equations governing the evolution of dynamic phasors can be formally derived from the 
differential equation for the original time trajectory, using the equality - 

— < x >k (t) = -ju <x>k {t)+ <±>k {t) 
at 

(3.9) 

where u = 2TV/T. Approximate models are based on truncated Fourier series expansions. Dynamic 
phasors of a T-periodic trajectory are constant, and a desired periodic trajectory is thus represented 
by a desired set point in phasor representation. The linearized dynamic phasor model, about a desired 
set point is thus time invariant. Local stability analysis and guidance for parameter selections thus 
reduces to eigenvalue analysis in the respective model. In the present case, such analysis (left out 
here) reveals that stability is attainable for reference trajectories with a period of u = 1, dominated 
by their first harmonic (in the flat coordinates), centered at the rest point and with a radius of « 0.5. 

3.3.5    A Simple Dissipative Measurement Feedback 

The dynamic observer suggested above is restricted to periodic orbits in a neighborhood of the rest 
point. An additional control mechanism is therefore needed to drive the vortex into such a neighbor- 
hood. In the absence of an observer, such a mechanism cannot require detailed state information. The 
tool of choice here is the equation - 

-{Vmv + (l + e)Vc) = e<bc (3.10) 

By (3.10), any control selection that forces e\&c < 0, is dissipative, and will drive the vortex towards 
the rest point. Moreover, since $c is close to periodic under low gain actuation, the same holds if c 
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is selected to be (close to) zero mean, with e($c - tfc) < 0, where *c is the average over a period. 
The advantage of a zero-mean e is that it prevents a drift in e, and results with a practically feasible 

bounded actuation signal. _ 
Figure 3.5 shows plots of $c - ^c and of a low-pass version of u - ü; both trajectories are associated 

with a vortex trajectory that slowly spirals towards the rest point. The phase match is obvious and 
a path to a stabilizing control is set. Figure 3.6 depicts the stabilizing effect of a low gain negative 
integral feedback e = -6(u - u) - pe, where S > 0 is a small gain and p > 0 is a small "forgetting 
factor" that is used to eliminate long term effects of deviations from the ideal zero-mean condition. 

40 50 SO 70 SO 90 100 HO        120 

Figure 3.5: Plots of zx - zi (solid) and a (low pass filtered) u - ü (dashed) under low gain actuation. 

Figure 3.6: Phase portrait of vortex motion under the simple dissipative feedback 

One practical aspect that needs to be resolved in implementing the dissipative control suggested 
above is a means of estimating the period of motion during weakly actuated, "large deviations". Such 
estimates are needed in order to extract ü from velocity measurements. Additionally, an estimate of 
the total energy stored (based on the combined Hamiltonian $mt, + e*c) is needed, in order to be 
able to determine whether the vortex entered (or left) the domain of the dynamic observer. Direct 
inspection reveals that (in the weakly actuated system), there is a monotonous, easily tabulated 
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relationship between both these quantities and the minimum over a period of the measured velocity u 
as depicted in Figure 3.7. Since period variations (in the normalized coordinates) are roughly bounded 
between [27r, 37r], the estimation of both quantities - without a priori information - requires less then 
two periods. 

Figure 3.7: Plots of the approximate value of z\ - when crossing the level 22 = 0 (left) - and of the 
approximate period (right) in unactuated dynamics, as functions of the minimal absolute value over 
a period of the measured fluid velocity 

3.3.6 A Global Observer Based Tracking Controller 

A global controller is formed by patching the large deviations dissipative controller, as described 
right above, with a controller that combines the state-feedback tracking controller and the dynamic 
state observer, in a neighborhood of the prescribed vortex trajectory. As is usually the case, safe 
switching between different controllers is a delicate job. Critical issues include stability under the 
switching procedure and using hysteretic bands in the switching region, to avoid chatter. Details of 
these mechanisms are not specific to the focal points of this article and are left out. A demonstration 
of a response of the bi-modal closed loop system is depicted in Figure 3.8, where the controller - in 
dissipative mode - drives the vortex from the far field to the desired neighborhood, and then switches 
to steady state tracking of the designated trajectory. 

3.3.7 Remarks On Generic Aspects 

As some details of the developments described in this section may appear to be peculiar to the specific 
system at hand, it is worth highlighting those aspects that are likely to be generic to similar control 
problems involving low order vortex models. 
• The first comment concerns the emphasis on a simple structure / constant gain observer. The 
systems under consideration are characterized by the facts that detailed models are both distributed 
and highly nonlinear, and that nonlinearity is a dominating aspect of even the simplest, lumped, low 
order models, used in control design. Absent reliable modeling error bounds, avoiding the use of a 
continuum (or a very large number) of local linearizations and elaborate, state estimate dependent 
coordinate change mappings, seems to be a matter of common sense prudence. Our example illustrates 
the fact that the domain of validity of a fixed structure observer may be large enough to cover the 
desired region of operation. In other systems, switching between a small number of fixed observers may 
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Figure 3.8: Closed loop tracking of a vortex orbit reference, asterisks: tracking reference orbit; bold: 

actual vortex trajectory 

be necessary to cover the area of interest, but. the objective of avoiding a continuous gain scheduling 
may still be attainable. 
• When both free and controlled dynamics are periodic, direct readings of "over a period" properties of 
the sensed signal may provide valuable information. In particular, it may provide the triggers needed 
to switch between different modes of a multi modal controller, or even for direct feedback stabilization, 
as demonstrated by the present example. 
• Continuing the focus on periodicity, linearized dynamic phasor models provide a useful tool for 
stability analysis and design parameter assignments. 
• Its simplicity notwithstanding, a very interesting observation concerns the dissipative mode of the 
suggested controller. While standard dissipative controllers are based on adding or increasing some 
natural form of damping (e.g., current resistance or mechanical friction), our vortex model is inherently 
lossless in steady operation and control is not used to add damping in the above sense! Here we use 
an altogether different mechanism, based on the fact that the total stored energy is the sum of two 
distinct Hamiltonians (#m„ and #c) and that control actuation is used to vary the relative weight 
of each of the two Hamiltonians in the combined energy term. In words, dissipation is achieved by 
varying the relative weight of *c in opposite phase to the variations in *c. 

3.4    Diffuser pressure recovery control 

UTRC has range of flow control programs, including DARPA Micro Adaptive Flow Control program 
aimed at helicopter retreating blade stall control. Recently, dynamical systems and control theory 
methods were applied to control of flow separation in diffusers within the Dynamic Separation Control 
project. This effort was partially sponsored by AFOSR. Details are decribed in paper [c6]. 

Aggressively open diffusers are subject to flow separation and hence loss of performance measured 
by the pressure recovery coefficient. This coefficient is defined by Cv = T^S, where Ap = P2 - Pi 

represents the static pressure difference between inlet and exit, p the density and U\ the mass- and time- 
averaged inlet velocity. The subsonic diffuser performance measured by pressure recovery coefficient 
can be improved by increasing mixing of the high momentum free stream and low momentum fluid 
at the wall. Separation control in a diffuser at large angles of expansion was acchieved at UTRC 
experiments described in [38,42,12] via periodic forcing using a synthetic jet actuator located usptream 
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of the separation point.   (Previously such concepts were used to control of airfoil separation [49]). 
Figure 3.9 shows the experimental setup.   In particular, in [12] UTRC team and Brianno Coller 

reference station 
(monitor inlet velocity and static pressure) 

/ o   o   o   o   o   o 
U-» ^- 

forcing 
location 

a   dynamic pressure 
~ P(t)      Ap(t) 

o • o • o   #o      o 

^^2\ u(t) 

Figure 3.9: Flow facility schematic 

has studied diffuser pressure recovery control using models and experiments. The new concepts in 
this study was to use control to excite beneficial non-equilibrium dynamics in the separating shear 
layer. Acoustic forcing at the beginning of the expanding section of the diffuser resulted significant 
performance enhancements for certain actuation frequencies as shown in Figure 3.10. Brianno Coller 

40 60 80 100 120 140 
forcing frequency [t (Hi)] 

160 180 200 

Figure 3.10: Pressure recovery coefficient in terms of the frequency at the diffuser exit plane for the 
forced separated Bow, showing sensitivity of performance to frequency. 

(in collaboration with UTRC reseachers) has developed a Lagrangian point vortex simulation [33, 35] 
to predict pressure recovery enhancement in a planar diffuser as a result of actuation [12]. Numerical 
results compared well with experiment. Qualitative evolution and interaction of the controlled vortices 
near the wall are visualized using smoke and are also found to match the model simulation results 
well. 
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Figure 3.11: Vortex formation of a diffuser ßow forced with a Strouhal frequency of St = 0.3. 

For more information, please refer to paper [c6]. 

3.5    Control of mixing in jets in cross-flow 

3.5.1 Introduction 

Mixing in various places in combustor is the key to aeroengine performance and durability of its 
parts. The temperature pattern factor is a measure of nonuniformity of the temperature profile of 
the air approaching the aeroengine turbine. Nonuniformity creates excess oxidation and large thermal 
stresses in the turbine guide vanes that lead to destruction of the metal and hence to reduced turbine 
durability. On the other hand, because of high engine thrust requirements in military aeroengines, one 
needs to operate at high turbine inlet mean temperature conditions. This leads to high maintainance 
costs, as the vanes must be replaced often. The temperature profile is controlled by the mixing rate 
of the air jets injected into the combustion chamber along the combustor. Improved mixing of the air 
jets with the cross-flow carrying hot combustion products would allow a more uniform temperature 
profile of the air at the turbine exit, with reduced peak temperature and gradients, while maintaining 
the same mean temperature, and hence thrust. In this way an increase of mixing rates of jets in 
cross-flow using control would improve aeroengine affordability. 

3.5.2 Description of Dynamic Combustion Enhancement project 

The AFOSR sponsored research at UTRC in 2000 was focused on control-oriented modeling and 
model-based control of jets in cross flow. This work was an integral part of larger effort in Dynamic 
Combustion Enhancement (DCE), mostly sponsored by corporate sources. The goal of DCE project in 
2000 was to demonstrate in experiment a significant mixing enhancement in jet in cross-flow using flow 
control, or prove using a model that this is impossible using low actuation level. The AFOSR project 
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Figure 3.12: 

was focused on development of tools for determining actuator placement and control laws based on 
reduced-order models. DCE project used the tools designed within AFOSR project and demonstrated 
mixing enhancement with control in experiments. 

3.5.3    Physical phenomena observed in jets in cross-flow 

It was determined from the literature studies ^one in January and February 2000 and from results 
of UTRC experiments and Large Eddy Simulations (LES) that the dynamics of the jet in cross-flow 
is dominated by two types of coherent structures (see Figure 3.13). The shear layer Kelvin-Helmoltz 
type structures occur where the jet bends in the direction of the cross-flow. Downstream of the bend 
the dynamics is dominated by streamwise counter-rotating vortices. This counter-rotating vortex pair 
(CVP) seems to be the main mixing mechanism of the uncontrolled jet. It is aggreed in the literature 
that CVP is the major mixing structure in the jets in cross-flow. The dominance of the coherent 
structures is a strong indication that reduced-order modeling is a viable modeling path. We would 
like to mention that even though the jets in cross-flow have been subject of extensive studies, the 
mechanism of creation of CVP is still a matter of controversy and active research. 

Any study of mixing requires investigation of particle motion. In experiments this is done using 
Planar Laser Induced Fluorescence (PLIF) or MIE-scattering. For instance, in PLIF technique fluo- 
rescent particles are introduced to the jet flow and fast speed camera takes pictures of a planar sheet 
where a pulsed laser excites the fluorescence of the acetone. Figure 3.14 shows a typical experimental 
setting. In this way instantaneous measurements of the concentration of passive scalar introduced 
in the jet can be obtained with spatial resolution of 30 microns and temporal resolution of 30Hz. 
Averages of many snapshots allow to obtain spatial probability distribution of the passive scalar in 
the measurement plane. The probability distribution allows to calculate one of the commonly accept- 
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Jet in cross-flow: unsteady fluid structures determine mixing 
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Figure 3.13: Coherent structures dominating in jets in cross-flow 
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Experimental measurement of passive scalar concentration 
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Figure 3.14: Measurement of passive scalar concentration in PLIF experiment 
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ed measures of mixing called unmixedness, defined as the ratio of the standard deviation of passive 
acalar concentration to its mean value. Decreasing of the unmixedness on a plane transverse to the 
jet located downstream of the jet bend by a significant factor is the goal of DCE project at UTRC. 

Figure 3.15 shows results of passive scalar measurements in UTRC experiments. The analysis 
of passive scalar pictures shows the effect of the counter-rotating vortex pair on the passive scalar 
distribution. 

MIXING ANALYSIS OF SUBSONIC JET 
IN CROSS FLOW 

Schematic 

Instantaneous and time-averaged 
snapshots of passive scalar distribution 
measurements from experiments 

Time Average 

Figure 3.15: Experimentally measured passive scalar concentration in jet in cross flow experiments at 
UTRC 

3.5.4    Mathematical description of the flow 

We are interested in modeling a strong jet entering from a pipe into a crossflow. A schematic repre- 
sentation of such a jet is shown in Figure 3.13. The quantities Ux and C/jet are the velocities of the 
undisturbed crossflow and of the jet, and the radius of the jet is Ritt. We start with the assumption 
that for a strong jet in crossflow, the vorticity is concentrated on the surface of the jet [11]. Then the 
jet can be modeled by a cylindrical vortex sheet governed by the three-dimensional inviscid vorticity 
equation, i.e. 

^ + vTVu,-u;TVv = 0 (3.H) 
at 
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where v and u are the velocity and vorticity vectors, and u = V x v. In addition, the velocity vector 
v satisfies the incompressible continuity equation [6] 

VTv = 0 (3-12) 

Using Eq. (3.12), Eq. (3.11) can be further written in conservation form 

^ + (v^FT)T = 0 (3.13) 
at 

«here F is the 3 x 3 flux matrix, i.e. 
F = wvT - vwT (3.14) 

The closure relation between the vorticity and velocity is given by the vorticity-induction equation 
(Biot-Savart law) [86]. The velocity v can be expressed as the sum of an irrotational component, the 
incoming crossflow velocity ttoo, and a solenoidal component, the vorticity-induction component vw 

v = u00 + vw,    v^i^x^dV (3.15) 

Passive scalar transport is described by the advection-diffusion equation 

dc(x, t) 
dt 

+ v(x, t)rVc(z, t) - /iAc(x, t) = 0. (3.16) 

For the flows of interest the advection term v(x,t)TVc(x,i) dominates the diffusion term fiAc(x,t). 
The passive scalar distribution from any model can be compared with experimental data obtained 

using the setup shown on Figure 3.14. 
The control of the jet can be achieved by manipulation of boundary conditions. For instance, 

the profile of the flow entering the cross-flow from the pipe can be assumed to be a given function 
of time. The mixing performance can be measured by various functionals depending on the passive 
scalar concentration c(x,t). For instance, the instantaneous unmixedness (the ratio of the standard 
deviation to the mean value) on the performance measurement plane V downstream of the jet bend. 

The vorticity formulation of Navier-Stokes equation is an infinite-dimensional evolution equation 
w'th the right-hand side containing a nonlinear integral operator. The full infinite-dimensional model 
of jet in cross-flow is clearly intractable for analysis and control design. Reduced order modeling is 
a necessity. The current effort in control-orientted reduced-order modeling of jets in cross flow is 
described in the following sections. 

3.5.5    Requirements for the control-oriented models 

Since the goal of the project is to make an impact on Dynamic Combustion Enhancement future using 
methods of dynamical systems and control theory, we require the models to be physically relevant, 
suitable for control design, and refinable. Here is a more precise description of the metrics for the 
models. 

1. Physically relevant. The models should adequately capture evolution and interactions of the 
most dominant coherent structures observed in the flow. In particular, this excludes input-output 
black-box models that do not use explicit physical parameters. 

2. Suitable for control design. Models need to be suitable for control design using existing 
methods of control theory, not just control simulations. In particular, this implies strong preference 
for the following requirements. 
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(a) Explicit apperance of control input as a function of time, not just availability of few tunable pa- 

rameters. 
(b) Ability to explicitly calculate an instantaneous measure of mixing performance. 
(c) Continuous finite dimensional description. 

3. Refinable. The models should have a structure that allows one to obtain a more accurate s- 
patial and temporal description of the flow when more computational elements are used. In the limit, 
the models should approach CFD accuracy of description. 

The Lagrangian vortex models have many advantages over Eulerian CFD for simulations of shear 
flows at high Reynolds numbers [33, 33, 35]. The low order vortex models used effectively for dynam- 
ical systems studies of mixing. However, purely Lagrangian models are not best suited for traditional 
control design for the flows dominated by convection. The main problem is that the computational 
vortex elements have to be created and removed during discrete events determined by the computa- 
tional algorithm. This makes Lagrangian models hybrid. Another disadvantage of Lagrangian vortex 
models is that the control input and surfaces on which the performance measure is evaluated are 
usually fixed in the Eulerian frame. Thus, in most cases of interest the Lagrangian models do not 
satisfy requirement of suitability for control design. Therefore, we deeded to pursue an alternative 
modeling path. The concept of mixed Eulerian-Lagrangian models w? 3 introduced by Bernd Noack 
and Andrzej Banaszuk. A generalization of the concept for the three-dimensional vortex sheet was 
proposed Razvan Florea and is currently under development. 

The model validation metrics has been defined as well. It has been determined that the models 
should agree with experimental data with respect to the following four metrics: 
1. Jet centerline trajectory. 
2. Counter-rotating vortex pair peak vorticity trajectories. 
3. Circulation assigned to peak vorticity trajectory. 
4. Passive scalar distribution. 
All of these physical quantities can be obtained from experiments. The easiest ones to obtain are the 
jet centerline trajectory and concentration of passive scalar. The other two quantities require lengthy 
measurements of velocity fields by transversing a hotwire probe or a costly Particle Image Velocimetry 

(PrV) measurement. 

3.5.6    Hierarchy of control-oriented models for jets in cross-flow 

Hierarchy of models for jets in cross-flow created at UTRC includes the following models: 
1. High complexity model: 3D spectral Direct Numerical Simulation (DNS) for jets in cross-flow 
including passive scalar transport equation to trace concentration of jet particles was developed and 
transitioned to UTRC by Thomas Bewley and Peter Blossey from UCSD. Code allows overnight 
simulations for both uncotrolled and controlled cases on UNIX workstations and fast PCs. DNS is 
considered physically relevant and refinable, but not directly suitable for control design (millions of 
states). The code was used for extraction of parameters of grey-box type models and for validation of 
low complexity models and control concepts derived using these models. After a suitable performance 
measure (penalizing nonuniform distribution of passive scalar) has been identified from studies of low 
complexity models we will attempt optimization of control laws and actuator locations. 
2. Medium complexity models: 3D Eulerian/Lagrangian vortex sheet model has been introduced 
by Razvan Florea, Bernd Noack, and Andrzej Banaszuk and is currently being developed. The jet 
flow is modeled by a cylindrical vortex sheet. Starting with the incompressible vorticity equation, an 
integral formulation for the strength of the vortex sheet in a moving coordinate system is derived. 
The velocity field induced by the vortex sheet is given by the Biot-Savart law.  The computational 
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mesh parametrizing the jet surface can move along planes locally transverse to the jet axis. This 
characterizes a "Lagrangian" part of the model. The transverse planes are either fixed, or can rotate 
with the jet surface but cannot move along the jet axis. This characterizes an "Eulerian" part of the 
model. The model is still under development. Boundary condition need to be fixed and the simulations 
results need to be validated. If the model is passes a validation test, it offers a great potential for 
control design. It is physically relevant, and refinable. The model uses a fixed number of states (of 
order of thousands). With the run time in minutes it is more suitable for control design than DNS. 
Unfortunately, control techniques applicable for models with thousands of states are still limited. 
3. Low complexity model: parabolized two-dimensional two-vortex model has been developed by 
Thomas John, Satish Narayanan, Andrzej Banaszuk, and Shubhro Ghosh. 

3.5.7    Control of jet in cross flow using DNS model 

We have performed direct simulations of the jet in crossfiow to evaluate the effect of forcing on mixing 
by the jet. Both forced and unforced cases were simulated at a Reynolds number Rej = Ujdj/u = 
3000 and a jet velocity ratio R = UJ/UM = 6. A number of forced cases were explored in shorter 
simulations, and two forced cases were chosen for long simulations to provide well-converged statistics 
for comparison with the unforced case. Both the time-averaged properties of the jets and the level 
of unsteadiness in mixing are evaluated using a number of metrics, including jet trajectory, spreading 
rate, entrainment and mixedness. The forced jets perform well in the time-averaged sense, although 
sometimes at the expense of an increase in unsteadiness. Results are described in papers [cl2 j6]. 

The jet in crossfiow has wide application in industrial and environmental flows. Dilution jets in 
combustors and cooling jets in turbines are examples of jets in crossfiow in industrial flows. In the 
atmosphere, flows from smokestacks and chimneys as well as accidental ground level releases can be 
modeled as jets in crossfiow. In some of these flows, buoyancy, heat release and compressibility may 
play important roles. However, the large-scale features of those flows may have much in common 
with a jet in crossfiow in an incompressible flow. This study focuses on the study of mixing in such 
a fundamental setting through the tool of direct simulations. By modulating the jet inflow into the 
domain at a variety of frequencies, the effect of forcing on mixing is explored through a variety of 
steady and time-varying measures. 

Study of the jet in crossfiow has grown in recent years with new work by experimental and com- 
putational groups around the world. Detailed flow visualization studies have been performed by |19], 
[20] and [32]. The structure of the near field of the jet in crossfiow was studied by [19], while [20] 
focused on the origin of vorticity in the wake of the jet in crossfiow and found that separation events 
in the boundary layer surrounding the jet led to the formation of wake vortices. [32] further studied 
the formation of vorticity in the wake and the patterns of separation around the jet as well as in the 
pipe through which the jet flows into the domain. 

Numerical Method 

The governing equations used in these simulations of the jet in crossfiow are the incompressible Navier- 
Stokes equations 

duj     dujUj    _   J_    d2Uj   _ dp_ ,g ^ 
dt       dxj Re dxjdij     dxi 

p.   =   0 (3.18) 
ait 

An convection-diffusion equation is used to model the evolution of the scalar field: 

g£ + ffej£ = .J_    *' (3.19) 
dt      dxj      PrRe dijdxj 
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Both the Reynolds number of the channel flow Äe/,, based on the free stream velocity UQO and the 
channel half-height, and the Reynolds number Red based on the jet diameter d and the centerline jet 
exit velocity Uj are 3000, while the velocity ratio r = Uj/U<x, is six in these simulations. The Prandtl 
number is taken to be that of air, i.e. Pr = 0.7. 

Periodic boundary conditions are imposed in the streamwise and spanwise directions, and these di- 
rections are treated using the pseudospectral Fourier method. The wall-normal direction is discretized 
using a staggered, second-order finite difference technique developed by [8] . In the wall-parallel di- 
rections, the computation of the nonlinear terms is performed on a grid which contains 3/2 as many 
collocation points as the computational grid to eliminate the possibility of aliasing error. The Navier- 
Stokes equations are solved using a fractional step technique developed by [5]. The equations are 
advanced in time by a hybrid implicit-explicit scheme where the wall-normal convective and diffusive 
terms are treated implicitly. The implicit terms are handled by a Crank-Nicolson scheme while an 
explicit, low-storage, five-stage, fourth-order Runge-Kutta scheme [10] is used for explicit terms — 
the wall-parallel convective and diffusive terms. The implicit treatment of the wall-normal convection 
eases the restriction on the time step that would be imposed by the flow of the jet across the grid, 
which is refined in the wall-normal direction to resolve the large velocity gradients close to the wall. 
A linearization of the wall-normal convective term in the wall-normal momentum equation which pre- 
serves the second-order accuracy of the time integration [5] is employed to avoid the implicit solution 
of a nonlinear equation: 

'      2       2      + ^_2     _      2   2      + 0(A<2) (3 20) 
OX2 OXi    ] OX2 K 

The evolution equation for the scalar field is advanced in time using the same hybrid implicit-explicit 
scheme. However, the wall-normal direction is treated with an upwinding finite volume scheme for the 
scalar, and filtering of the high wavenumbers in the wall-parallel direction is also performed to avoid 
instabilities in the scalar computations. 

Computational Setting 

Although the use of a Fourier method for the wall-parallel directions provides a high degree of resolu- 
tion, the grid is restricted to be uniform in these directions and cannot be refined in the neighborhood 
of the jet exit. As a result, the resolution in our simulations is marginal in the neighborhood of the jet 
exit. The computational grid is approximately 25 x 12 x 10 d in the streamwise, wall-normal and span- 
wise (x, y and z) directions, respectively. The grid spacing in the streamwise and spanwise directions 
is Ax = Az = 0.16dj on the computational grid, so that the jet orifice is represented by approximately 
twelve points. The grid in the wall-normal direction is defined using a hyperbolic tangent stretching 
function. The computational grid is 168 x 120 x 64, with 256 x 120 x 96 collocation points used in 
the computation of the nonlinear terms to eliminate aliasing error in the wall-parallel directions. 

The domain of the simulations is channel flow, with periodic boundary conditions in the streamwise 
and spanwise directions and permeable, no-slip walls at the top and bottom of the boundary. The 
jet inflow is specified as part of the (possibly time-varying) boundary condition on the wall-normal 
velocity field. The boundary condition on the scalar is also specified at the top and bottom wall, 
allowing the scalar to be non-zero only at the jet exit. The inflow boundary condition upstream of 
the jet is enforced (weakly) through the use of a fringe region which removes disturbances 15 to 20 
diameters downstream of the jet, creating a laminar inlet flow at the entrance to the box. The inlet 
flow is laminar, but the mean velocity profile is fuller than the parabolic steady state profile. The 
simulations used a profile of U(y) = Uoo (1 — y8), which gives an initial boundary layer thickness of 
S99% = 0.44/t « 2d. Thus, the boundary layer will grow as the flow moves through the domain but 
will not thicken substantially before reaching the jet orifice. 
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The jet is placed near the entrance to the domain in the streamwise direction and is centered in 
the box in the spanwise direction. The velocity profile at the jet exit is axisymmetric and is specified 
as a function of the radial distance from the centerline of the jet. A raised cosine filter is applied in 
Fourier space to the velocity profile at the jet exit to smooth the profile, preventing the excitation of 
high wavenumber oscillations in the velocity field by the jet. A region of distributed suction is placed 
near the exit of the domain to ensure that there is no net mass flux across each of wall. 

The jet-in-crossflow has been simulated in a periodic channel-flow geometry, with the outflow 
velocity profile of the jet specified and the jet disturbances at the outflow of the domain removed by 
a fringe region to allow a nearly laminar inflow into the domain. The flow in the pipe leading to the 
jet outlet, which may separated before entering the domain at low jet velocity ratios [32], has been 
neglected'in these simulations. The velocity profile where the pipe exhaust', into the domain has been 
specified in the simulations as a Dirichlet boundary condition on the normal velocity, and the wall- 
parallel velocities on this plane have been set to zero. (The wall-parallel velocities could be non-zero, 
for example in the case of a swirling jet-in-crossflow.) Imposing the velocity profile does neglect the 
development of the pipe flow approaching the jet exhaust, but may be a reasonable approximation at 
higher jet velocity ratios. [32] noted that the flow in the pipe through which the jet flows into the 
domain did not separate for velocity ratios greater than six. The velocity ratio Uj/Uoo is six. Although 
a top hat profile is desirable for the jet inflow, the non-dissipative Fourier spectral method used in the 
discretization of the wall-parallel directions requires smoothness in the velocity boundary conditions. 
As a result, the jet inflow is specified as an exponential function of the radial distance from the center 
of the jet and is then filtered using a raised cosine filter to remove high wavenumber content. The 
functional form of the jet inflow before filtering is: 

tfi(r)~exp(-   J    ) (3-21) 

where dj is the specified diameter of the jet. Note that the velocity is not zero at the edge of the jet 
(r = dj/2); it does, however, fall to zero quickly outside the edge of the jet. The mass flux into the 
domain from the jet is balanced by weak, distributed suction near the end of the computation domain. 
This suction overlaps with the fringe region and ensures that there is zero net mass flux across each 
of the wall-parallel planes in the channel in our incompressible flow. 

Our computational domain is periodic in the streamwise and spanwise directions. If the fluctuations 
induced by the jet-in-crossflow are not removed before the end of the domain, they would substantially 
influence the flow dynamics around the emerging jet. A fringe region is added to the simulation domain 
to remove the fluctuations induced by the jet-in-crossflow and enforce the desired inflow conditions. 
The inflow is specified as C/oo(y) = (1 - (y/h)8) with the wall-normal and spanwise velocities and the 
scalar set to zero at the entrance to the domain. Here, y e [-h, h] where h is the half-height of the 
channel. The displacement thickness of the boundary layer (computed over half of the channel) is 
somewhat smaller than the diameter of the jet exit {5/dj = 0.7), while the momentum thickness is 
about a third of the jet diameter 0/dj = 0.3). The Reynolds number of these simulations based on jet 
diameter and free stream velocity .Re«, = U^dj/v is 500 with a velocity ratio Uj/Uoo of six. One may 
also define the Reynolds number based on the jet exit velocity and jet diameter Rej = Ujdj/u which 
is 3000 in these simulations. 

Results 

For a range of frequencies similar to but lower than those for round jets, forcing has a substantial 
impact on the structure and mixing of the jet. Forcing in the frequency range (Std - 0.1 - 0.25) led to 
increased spreading of the scalar in the wall-normal direction and greater penetration into the crossflow. 
In these cases, the mean scalar profiles are qualitatively different from the unforced case, appearing 
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pinched in the center with legs of fluid stretched below. Fluctuations at the upper edge of the jet are 
enhanced by the forcing which excites the Kelvin-Helmholtz rollup. As expected (e.g. see [73]), forcing 
the jet at higher frequencies results in a jet which resembles closely the unforced jet. Examination of 
the frequency spectra at different locations in the jet shows that forcing at relatively high frequencies 
Std = 0.64 persists only very close to the jet exit. Further from the jet, no peak in the spectra is 
visible at the forcing frequency: apparently, the jet in crossflow is not receptive to forcing at higher 
frequencies. Forcing at the lower frequencies Std = 0.1-0.25 results in increased energy far away from 
the jet exit in this lower frequencies, providing an excitable band of frequencies which are beneficial 
for mixing. Figure 3.16 illustrates the effect of forcing on a downstream plane transverse to the jet. 
Forcing can have a substantial impact on the structure of and mixing by the jet in crossflow. We have 

Time-averaged scalar fields: conventional measures of mixing 

Baseline case: 

unforced jet in    5 

cross flow 

Stdj~0.4       5 

-4-2 0 2 4 -4-2 0 2 4 

Figure 3.16: 

simulated the jet in crossflow to examine the response of the jet to sinusoidal forcing at a variety of 
frequencies in the range Std = 0.1-0.64. The effect of the forcing on the jet is most substantial in the 
range Std = 0.1 — 0.25, with increased spreading, penetration and entrainment at those frequencies. 
The appropriate metric for mixing in the jets in crossflow is an open question. Increased spreading 
and entrainment often comes at the expense of increased unsteadiness and intermittency in the jet. 
The acceptability of this unsteadiness is primarily dependent on the timescale associated with the 
unsteadiness. In a cooling application for example, unsteadiness at timescales much faster than the 
characteristic heating/cooling timescale of a material may not result in substantial thermal cycling. 
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However, slower timescales could lead to substantial cycling and fatigue. Careful interpretation may 
lead to greater understanding of the importance of unsteadiness and the potential for increased mixing 

by forced jets in crossflow. 

3.5.8    Three-dimensional Eulerian-Lagrangian vortex sheet model for the actuated 
jet in cross flow 

A novel three-dimensional Eulerian/Lagrangian vortex sheet formulation was proposed to model the 
actuated jet in cross flow by Razvan Florea. An earlier version of a similar model was proposed by 
Bernd Noack and Andrzej Banaszuk. 

The jet is modeled by a cylindrical vortex shef t.. Starting with the incompressible vorticity equa- 
tion, an integral formulation for the strength of the vortex sheet in a moving coordinate system is 
derived. The velocity field induced by the vortex sheet is given by the Biot-Savart law. The advantage 
of the present formulation is that a fixed number of states is required to describe the evolution of 
the jet in time. Such a formulation is very attractive for further developing of control strategies to 
enhance molecular mixing. 

The motivation for the present approach is to derive a model that can both capture the mixing 
characteristics of a jet in cross flow and be further used in active control studies of the actuated jet. 
Some of the present models based on LES/DNS are very sophisticated and require an extremely large 
number of states and long time simulations with little physical insight. Other models, physical-based 
reduced order models, while are computational less expensive, are either derived in a Lagrangian 
frame with a variable (non-fixed) number of states [16], [17], or are too simplified and less relevant 
from the physical point of view [27]. For a review of the jet in crossflow research we refer to a paper 
by Margason [87]. All these models prove to be less appealing for active control studies. What we are 
looking for are reduced order models that can capture the main aspects of mixing and at the same 
time be used in active control studies. We want physically relevant reduced order models with a finite 
number of states. 

The present investigation tries to incorporate in a rigorous manner the Eulerian/Lagrangian formu- 
lation into a novel three-dimensional integral formulation of the vorticity equation. Another attempt 
of the present formulation is to maintain the main characteristics of a CFD type discretization for a 
relatively smaller number of states system. 

We are interested in modeling a strong jet issuing from a pipe into a crossflow using vortex type 
methods. For a review of such methods we refer to a paper by Leonard [85]. A schematic representation 
of such a jet is shown in Fig. 3.17. The quantities Uoo and Vjet are the velocities of the undisturbed 
crossflow and of the jet, and the radius of the jet is R^tt. We start with the assumption that for a 
strong jet in crossflow, the vorticity is concentrated on the surface of the jet [11]. Then the jet can 
be modeled by a cylindrical vortex sheet governed by the three-dimensional vorticity equation (3.11), 
the incompressible continuity equation (3.12) 

The closure relation between the vorticity and velocity is given by the vorticity-induction equation 
(Biot-Savart law) (3.15). The velocity v, at a point defined by the position vector x, is expressed as the 
sum of an irrotational component, the incoming crossflow velocity u«,, and a solenoidal component, 
the vorticity-induction component vw 

v = «„ + v„,    v^-L/^x^l^Vfxo) (3.22) 

Here the quantity xo is the position vector of any point of the sheet vorticity defining the jet. 
To discretize Eq. (3.13) we consider an elemental volume V attached to the jet moving surface, 

and can move within the surface. Hence, the elemental volume V is not a material volume, it has a 
velocity u which can be different from the velocity v of the material volume that coincide with volume 
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V at time t. The velocity u is going to be the projection of v on some particular local surface that is 
going to be defined later. We integrate Eq. (3.13) over an elemental volume V and after applying the 
Reynolds transport theorem, we obtain 

IfudV+f F,dS = 0 (3.23) 
at Jv Js 

The quantity S is the moving surface describing the boundary of the volume V, and F, is the flux 
matrix corresponding to the moving surface 

Fa = W(v-u)T-vo;r = 0 (3.24) 

We assume that, at any moment t, the jet surface can be parameterized by a set of quasi-orthogonal 
system of coordinates (x2,x3), where x2 is along the jet and x3 is across the jet surface. Note, that this 
is a moving mesh which deforms in both space and time and has a fixed number of points. In addition, 
we introduce the coordinate xi normal to the jet surface, i.e. (xi,x2,x3) form a three-dimensional 
system of coordinates, assumed to be orthogonal. Shown in Fig. 3.18 are the mesh parameterization 
of the jet surface, a view of of the elemental volume V = Axi x (EFHG) = Axx x Ax2 x Ax3, and 
the local system of coordinates. 

For each point on the surface mesh we denote the corresponding versors associated with the local 
system by TUT2 and r3, and the components of the velocity vector by ui,u2 and v3 along these 
directions. Note that the vorticity u, at any point on the mesh, is tangent to the surface mesh at that 
point. Hence, CJ is defined locally only by the two components w2 and CJ3. 

The position of each point on the mesh that describes the jet is given by the ordinary differential 

equation 
-— = u = v\T\ + V3T3 (3.25) 
at 

Hence, its section is aloud to move to move with the jet surface but not along the jet. As a result, the 
number of sections and states needed to represent the jet is constant. This characteristics defines the 
"Eulerian" part of our Eulerian-Lagrangian model. In a three-dimensional Lagrangian vortex model 
[17], at each moment in time, as the jet penetrates the cross flow, new solutions and corresponding 
states are introduced. These states follow the flow and leave the domain as the flow crosses the 
downstream far-field boundary. This transport of states through the domain makes the Lagrangian 
vortex model to be less appealing for an efficient analysis of the jet actuation. 

Next we describe shortly the numerical implementation of our model. For convenience we introduce 
two quantities 72 and 73 defined by 

udV « u>AxiAx2Ax3 = o^AxiAxa1 AX2T2 + CJ3AXJAX2 Ax3r3 (3.26) L V 
72 73 

Then the differential form of the Eqs. (3.23) and (3.24) in the local system of coordinates (xi,x2,x3) 

is given by 

£(72Ax2) - (Ax3)^(v273) = 0 (3-27) 

|(7sAx3) + (72Ax2)g + (Ax2)^ (»273|g - "372) - (Ax3)£^373) = 0   (3.28) 

These equations are discretized in space using centered differences in the X3 direction and upwinded d- 
ifferences in the x2 direction. We integrate numerically Eq. (3.15) with the Gauss-Legendre quadrature 
rule. We use three-dimensional local cubic interpolation for the vector x that describes the jet surface 
and linear interpolation for the components 72 and 73 of w. We use a simple corrected Euler (second 
order) for the time integration Equation (3.13) and the resulting space discretization of Eqs. (3.27) 

and (3.28). 
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Figure 3.17: Jet in cross flow. 

We impose that the flow around the wall is tangential to the wall. At the wall surface level, near 
the duct, outside the jet, the flow moves around the jet, tangential to the jet. We also impose the 
velocity of the jet flow, in a cross section of the duct, normal to the wall. We modeled these conditions 
using rings of distributed vorticity on the wall, around the duct, 7^3, and on the duct wall, bellow 
the wall, 702 and 703. Shown in Fig. 3.19 is the type of discretization we use for the initial jet, duct 
and wall. The above boundary conditions are solved implicitly at each moment in time. Using the 
velocity induced by different vortex sheets (wall, duct and jet), an algebraic system of equations is 
formed and the solution is found using an LU decomposition. Note that the matrix of this system 
does not change in time, the elements of this matrix are defined by the Biot-Savart law and as a result 
depend only the geometrical position of the wall and duct. 

At t = 0, we impose the additional condition that the vorticity distributions below the wall, around 
the duct, and above the wall, on the jet are identical. This initial solution is further marched in time. 

To show the effectiveness of the near-field boundary conditions, we show in Fig. 3.20 the initial 
velocity profiles in a vertical plane. The first case corresponds to a core size of 0.1 of the local mesh 
size, the second one corresponds to a core twice the local mesh size. 

Computing the correct velocity of the jet surface in the Eulerian-Lagrangian formulation requires 
additional attention. At each moment in time, for a given geometry we compute the velocity induced 
(Biot-Savart) by the vortex sheet. Note that the surface is defined by rings that are allowed to deform 
with the jet surface but not allowed to move along the jet. Next, we allow the vortex surface to move 
in space and a new surface is defined. The new surface is interpolated at cross sections corresponding 
to the old rings and new rings are defined. The difference in space between the old and new rings 
determines the correct velocity of the jet surface. This approach requires further investigations to 
understand the effect of the additional errors introduced with the interpolation. These errors may 
become important when geometrical instabilities form on the surface of the jet. 

The finite number of j sections which define the jet, and the finite length of the jet cause additional 
difficulties. For the moment, we used an increased core for the vorticity at the end of the jet. However 
the effect of these approximations require further investigations. 

To assess the effectiveness of the near-field boundary conditions we model the evolution of a jet in 
cross flow defined by the following parameters: [/«, = 1., Vjet = 6., , R}tt = 1. The jet is modeled by 
j = 35 rings with k = 19 points per ring. 
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Figure 3.18: Jet in cross flow. Left: quasi-orthogonal mesh parameterization of the jet surface. Right: 
elemental volume V = Axi x (EFHG), and local system of coordinates. 
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Figure 3.19: Initial jet, duct and wall discretization. 

52 



»JwiOl 1434:4« 

Figure 3.20: Initial velocity profiles in a vertical plane through the jet center. Left, core size of 0.1 x As. 
Right, core size of 2. x As. As - local mesh size parameter. 

To accelerate the convergence of the jet to its final position, the jet is also constantly moved 
(rotated) in the direction of the £/«, for the first 100 iterations. We show in Fig. 3.21 the jet evolution 
after 20, 60, 100, 200 and 1000 iterations. In addition, we also show in Fig. 3.22 shape sections of the 
jet (after 1000 iterations). We note that due to errors in interpolation (described in Section C), the 
jet starts to loose its symmetry. 

For the same kinematic conditions, we varied initial conditions (length of jet, imposed motion of 
the jet in the x direction) and the mesh density. We found that the most dynamic part of the jet is 
near the wall where the counter rotating vortex pairs are formed. The upper part of the jet behaves in 
a more static way. Based on its length and inclination, it induces a component of the jet velocity near 
the wall that has direct effect on the jet bending and the CVP formation. As a result, the combination 
of the initial conditions and the errors in the interpolation process has direct effect on the solution 
evolution, preventing the jet to evolve to the correct position. 

3.F 9    Two-vortex model for the actuated jet in cross flow 

A parabolized two-dimensional two-vortex model has been developed by Thomas John, Satish Narayanan, 
Andrzej Banaszuk, and Shubhro Ghosh. 

The dynamically significant flow structures appear to be ( see Figure 3.13) the shear layer struc- 
tures generated by the Kelvin-Helmholtz (KH) instability, the counter-rotating vortex pair (CVP), a 
typically weak horseshoe vortex (appearing for low jet Reynolds numbers near the jet and cross-flow 
bottom juncture), and an upright/wake vortex system that develops very close behind the jet (resem- 
bling a wake of vortices). Of these, we only discuss and model the KH and CVP dynamics and mixing 
characteristics. In doing so, we use inviscid descriptions of the flow features and structures, ignoring 
fine-scale turbulence driven viscous effects. We do not attempt to model or explain the appearance of 
the KH or CVP structures, but, given their presence and from their observed behavior, we provide a 
modeling framework for studying the KH-CVP system dynamics to analyze/derive control solutions 
for mixing enhancement. 

Kelso, Lim & Perry [32] based on their experimental study of jets in cross-flow, hypothesize the 
formation of vortex rings (as a result of the Kelvin-Helmholtz instability of the jet shear layer) from 
the jet which get distorted due to the crossflow such that: the upstream portion stays in a plane 
transverse to the jet and the downstream portion bends along the direction of the jet. while being 
positioned in a high speed region of the jet, resulting in its stretching (i.e. vorticity intensification). 
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Figure 3.21:-Jet evolution after 20, 60, 100, 200 and 1000 iterations. 
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Figure 3.22: Shape sections of the jet at J = 5,10,15,20,30. 

Cortelezzi & Karagozian note similar behavior of the vortex rings in their simulations of a jet in 
cross-flow using 3D vortex filament simulations. 

Using a direct numerical simulation (DNS) of jet in cross-flow (P. Blossey & T.Bewley, UCSD), 
the circulation in a plane normal to the jet trajectory was computed to obtain the circulation in the 
CVP at several points along the trajectory. The circulation is seen to increase and then decrease along 
the trajectory (see Fig. 3.23). 

We now focus on the evolution region from 2 to 6 jet diameters, where the KH formation has been 
initiated and the out-of-plane vorticity necessary to initiate the CVP motion has already been set up. 

We simplify and represent the array of vortex rings by "horizontal" (transverse to the jet direction) 
rods of vorticity, representing the upstream KH ring and two growing (stretching) "legs" to represent 
the jet portion that has been bent along the jet direction(see fig.   3.24). 

(More features may be added if they are felt to be important for mixing studies.) The transvjrse 
rod is moving at a speed of U/2 (typical convection velocity of structures in a shear layer) an«! the 
legs are growing with respect to the rod at a rate of U/2 (since they are in a portion of the jet which 
is moving at a higher velocity, say U) 

As mentioned before, the legs grow away from the transverse rod at the same rate that the rod 
moves away from the jet exit. So, if the rod if s\ away from the pipe, the tip of the leg is 2sx from 
the mouth (see fig. 3.25). 

The long bar on the side represents the initial circulation in the CVP (ro). As seen from the figure, 
if we were to add up the circulation in a plane transverse to the jet, its value would increase as one 
moves downstream. 

Now we consider as our model plane, a plane moving at a speed of U along the jet trajectory. This 
plane sees an array of vortex rings (in reality from KH structures formed) that are moving at a speed 
of U/2 into it (see fig.   3.5.9). 

As each of these rods crosses the plane, it leaves its leg in the plane forever and thus the circulation 
of the CVP on the plane is always increasing ; note the similar circulation growth feature from the 
DNS studies summarized earlier. Furthermore, note that the frequency of KH rods is twice that of 
the pulsations of the CVP. Please see figures 3.5.9,  3.5.9 & 3.5.9. 

The slope of the increase of the CVP is thus dependent on two quantities - the frequency of the 
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Figure 3.25: 

Model Plane: moving at speed U along the jet trajectory 

Speed 
U/2 

...0 
G--- 

Reference 
Pline 

Speed 
U/2 

G- 

Q- 

G- 

Figure 3.26: 

57 



2.S 
I 

Orcutatlon of on« of th« togs of th» CVP 

Figure 3.27: 

CkcutaDon of V» K-H, KH^ „-1.** 

5 - 

0 

-5 

'          ' 1  j i l 1  

Figure 3.28: 

58 



Ocutabon of Ida K-H KH     -3, («2 

10 l 1—  -r- 1 —i 1 1  l               \   ' 

5 ■ 

£   0 

-5 

i           —i _ 
-10 

)            OS            1 \S            2            2.5            3            3.5 
t 

4           *S           5 

Circulation ol one of tha lags of tha CVP 

20  1 r- 

/TV-7 
15 - /      \    '"/                 ~^  ' 

|io - r\^„J~^Kj - 

5 '-' \2/ 
i     i — 

0 
D            OS            1 1.5            2            2.5            3            3S 

t 
4            4.5 5 

Figure 3.29 

KH roll-up and its strength. Below, we evaluate the effect of changing these parameters. 
If we fix the momentum ratio ( jet to cross-stream), the control parameters are A which is the 

spacing of the KH vortices, <f> which indicates the phase difference between the KH crossings and the 
pulsation of the CVP at a fixed (control) frequency, T0 which denotes the initial CVP circulation 
and on„a which is the initial core radius for the KH roll-up (a function of the initial boundary layer 
thickness). The expressions for the velocity fields can be written as 

vx{x,y,t) -FCVP y 
2TT 

~pos ■p 'neg 

' pos 2TT 'neg 

where 

,jos = (x + d)2+y2 

CQVP — OQ+ Aut 

rcvP = ro + (^)* + £sin(^ + 20) 
4A/fjy 2Atf# 

(f>E [0,2TT) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

vy(x,y,t) = 

where 

TCVP x + d 
2TT    rjos 

r2 
■Julis* 

{l-e"cvp) + -TCVP x — d 

2*      r2
neg 

Tncg 
i-i **—"\      ^   •   a i   r*# V^ ~ZiCi      o~^~\ (l-e'cvp)-jsm0 + -^-2~,-^-{l-e  •) 

»=i 

r2 = (y-D2 + zf 

Zi = (i- 1)XKH ~ 2"' 

A = °KHo '+ Avt 

6 = 0.0025s3 - 0.0453s2 + 0.1114s + 1.4518;   s = Ut 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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Which may in turn be represented in terms of the control parameters as 

x = vx{x,y,t) = r)(pi,p2,p3,p4,t)F(x,y,t) (3.40) 

y = vy(x,y,t)=ri{Pl,p2,P3,P4,t)G(x,y,t) + J2Hi{y,P4,t)+Asm{e{t)) (3.41) 
t 

where 

pi = To (3.42) 

p2 = \KH (3.43) 

P3 = 4> (3-44) 

PA = OQKH (3-45) 

F,G & H are time-dependent non-linear functions 
T? contains a time-independent term, a linear growth in time and an time-oscillating term 

All vortex cores were assumed to be distributed as Gaussian functions, taking into account that 
their core is growing in time (thereby mimicking viscous diffusion and avoiding singularities). A series 
of these KH rods was first arranged parallel to each other in a plane perpendicular to the model plane 
And allowed to cross the plane with a velocity of U/2. The CVP in the plane is growing and pulsing 
as described above. 

Passive scalar transport is described by the advection-diffusion equation (3.16). For the flows 
of interest the advection term v(x,y,t)TVc(x,y,t) dominates the diffusion term /xAc(x,y,i). The 
advection diffusion equation can be studied in an Eulerian frame. Various control problems (including 
optimal ones) will be studied with this description, as various mixing measures can be determined by 
penalizing nonuniformity of the passive scalar concentration c(x, y, t) in space and time. In fact, in 
a parabolized model, mixing performance can be specified in terms of of c(x,y,Tfinai), where Tfinai 
is the time when the transverse plane reaches a fixed position downstream (representing position of a 
turbine inlet guide vane). Note that the result of the mixing performance evaluation will depend on 
the initial condition. In case of periodic bulk jet forcing, one should calculate a cumulative measure 
of mixing performance over one period of forcing from "instantaneous" measures of performance that 
depend on the initial conditions corresponding to a particular control phase. 

Alternatively, neglecting the diffusion term, one can study the passive scalar mixing using La- 
grangian simulation advecting tracer particles along the direction of the flow given by velocity filed 
v(x, y, t). The mixing can be studied using methods of dynamical system theory. 

In a preliminary study, particles were introduced on the plane with a Gaussian probability dis- 
tribution centered at the origin and the effect of KH frequency on the final particle distribution was 
examined. One can see from Figures 3.30 and that low frequency forcing was much more effective in 
spreading the jet particles than high frequency. Note that the parabolized two-vortex model does not 
explain the creation or interactions of the KH or CVP structures, hence, it does not satisfy Property 
1 (physical relevance). However, one could imagine construction of a "grey box" model that would 
use parametrization of the vorticity field with temporal coefficients dynamics reconstructed from DNS 
simulations. The parabolized model is not arbitrarily refinable, but one could develop a refinable 3D 
version. However, even in its present version the model is still very useful, as it provides a framework 
for studying effects of KH-CVP structures on particle mixing. Note that the model is suitable for 
control design using methods of dynamical systems and control theory. In particular, one can study 
desirable dynamics of coherent structures using dynamical systems or control theory and limits of 
achievable mixing performance. Once the desired behavior has been identified, one can attempt to 
enforce this behavior in a flow model (Eulerian-Lagrangian or DNS) by solving numerically a tracking 
problem, which in turn can be approached as an optimization problem. 
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Figure 3.31: Effect of high and low control frequency on the Mixing Variance Coefficient 
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3.5.10    Control of jet in cross flow: experimental results 

Experiments with control of jet in cross flow were performed in a UTRC facility shown in Figure 3.32 
by Satish Narayanan and Prabir Barooah. This work was funded from UTRC internal DCE funds, but 
it was closely tied to AFOSR effort. Some experiment were guided by prediction of AFOSR-funded 
project described in this report. The data collected from the experiment will be used to validate 
models developed in AFOSR project. 

Experimental facility for jet in cross-flow control 

Free stream/tunnel flow 
U ~ 13f/s 

h~4" 
Re,, - 27000 

OODDOD 

High bandwid 
actuator 

control 
signal 

Air supply 
Uj ~ 80f/s 
dj-0.12" 
Re; ~ 5000 

Figure 3.32: Experimentally measured mean velocity profiles in jet in cross flow experiments at UTRC 

Objectives of the experiments with control of jet in cross flow was to determine physical mechanisms 
to be affected by actuation to achieve mixing enhancement and demonstrate mixing enhancement The 
experimental rig had a non-reacting, single jet in cross-flow. Diagnostics involved hot-film anemom?try, 
and Mie scattering. High bandwidth actuator was used to excite the whole jet flow. 

Cold, non-reacting sub-scale experiments were conducted of the forced and unforced jet in crossflow 
with a velocity ratio of 6 (as in the DNS simulations). Slightly higher Reynolds numbers based on 
channel height were used but similar jet Reynolds numbers were used. 

A mechanical actuator (namely, a spinning valve) was used to modulate the jet at several fre- 
quencies around the forcing frequency predicted by the simulations as being the effective one (namely, 
Std = 0.1 — 0.25). Similar mixing and entrainment/mixing enhancements were noted with flow visual- 
ization and quantitative measurements of the velocity field, confirming and supporting the effectiveness 
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of "low frequency" actuation. 
Preliminary results shown in Figure 3.33 indicate mixing enhancement at low forcing frequencies, 

in good agreement with predictions of analysis using DNS and Two-Vortex model presented in the 
previous sections. 

Preliminary exploration of low-frequency forcing concept: 
entrainment & unsteady mixing enhancement 

Mean velocity at x=0 

Mean velocity at x=3dj    -* 

Figure 3.33: Experimentally measured mean velocity profiles in jet in cross flow experiments at UTRC 
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Chapter 4 

Personnel Supported 

UTRC personnel: Andrzej Banaszuk, Bernd Noack, Razvan Florea, Satish Narayanan, Alex Khibnik, 
Shubhro Ghosh, Scott Copeland, Clas Jacobson. Academic personnel: Thomas Bewley (UCSD), Peter 
Blossey (UCSD), Ahmed Ghoniem (MIT), John Hauser (UC Boulder), Thomas John (intern, Cornell), 
Igor Mezic (Harvard), Gilead Tadmor (Northeastern), Kurt Lust (University of Minnesota). 
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Chapter 5 

Publications 

5.1 Journal papers 

[jl] A.I. Khibnik, S. Narayanan, C.A. Jacobson, and K. Lust. Analysis of low dimensional dynamics of 
flow separation. Submitted to Notes in Computational Fluid Dynamics (Proceedings of Ercoftac and 
Euromech Colloqium 383 "Continuation Methods in Fluid Dynamics", Aussois, France, 6-9 September 

1998). 
[j2] I. Mezic and A. Banaszuk, "Comparison of systems with complex behavior", submitted under 

review in Physica D. 
[j3] B.R. Noack, I. Mezic, A. Banaszuk, and G. Tadmor, "Controlling vortex motion and chaotic 

advection", submitted to Physics of Fluids. 
[j4] A. Banaszuk, K.B. Ariyur, M. Krstic, and C.A. Jacobson, "An Adaptive Algorithm for Control of 

Combustion Instability", submitted to Automatica. 
p5] G. Tadmor, A. Banaszuk, "Observer-based control of vortex motion in a recirculation zone", 
submitted to IEEE Transaction on Controls Systems Technology. 
[j6] P. Blossey, S. Narayanan, T.R. Bewley, "Dynamics & control of a jet in cross-flow: direct numerical 
simulations & experiments", in preparation. 
[j7] P. Mehta, A. Banaszuk, "On the identification of heat release nonlinearity in the thermoacoustic 

feedback loop", in preparation. 

5.2 Conference papers 

[cl] G.S. Copeland, LG. Kevrekidis, R. Rico-Martinez, Adaptive detection of instabilities and nonlinear 
analysis of a reduced-order model for flutter and rotating stall in turbomachinery, 1999 CCA, Hawaii. 
[c2] S. Narayanan, A.I. Khibnik, C.A. Jacobson, I.G. Kevrekidis, R. Rico-Martinez, and K. Lust. Low 
dimensional models for active control of flow separation. 1999 CCA, Hawaii. 
[c3] A. Banaszuk and J. Häuser, On control of planar periodic orbits, 1999 CDC, December 1999, 

Phoenix. 
[c4] R. Smith, A. Banaszuk, and G. Dullerud, Model validation approaches for nonlinear feedback 
systems using frequency response measurements, 1999 CDC, December 1999, Phoenix. 
[c5] A. Banaszuk, Y. Zhang, and C.A. Jacobson. Active Control of Combustion Instabilities in Gas 
Turbine Engines for Low Emissions. Part II: Adaptive Control Algorithm Development, Demon- 
stration and Performance Limitations, AVT Symposium on Active Control Technology for Enhanced 
Performance Operation Capabilities of Military Aircraft, Land Vehicles, and Sea Vehicles, May 2000, 

Braunschweig. 
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fc6] B CoUer B. Noack, S. Narayanan, A. Banaszuk, and A. Khibnik, "Reduced-Basis Model for 
Active Separation Control in a Planar Diffuser Flow", paper AIAA-2000-2562, Fluids 2000, June 

2000, Denver. . 
[c7] A. Banaszuk, Y. Zhang, and C.A. Jacobson. Adaptive Control of Combustion Instability Using 
Extremum-Seeking, 2000 ACC, June 2000, Chicago. 
[c8] I. Mezic and A. Banaszuk, "Comparison of Systems with Complex Behavior: Spectral Methods", 

2000 CDC, Sydney, December 2000. 
[c9] B.R. Noack, I. Mezic, and A. Banaszuk, "Controlling vortex motion and chaotic advection", 2000 

CDC, Sydney, December 2000. 
[clO] K.B. Ariyur, A. Banaszuk, M. Krstic, "Identification of averaged dynamics of a controlled com- 
bustion instability", 2000 CDC, Sydney, December 2000. 
[ell] G. Tadmor, A. Banaszuk, "Observer-based control of vortex motion in a recirculation zone", 
submitted to 2001 NOLCOS, St. Petersburg, July 2001. 
[cl2] P. Blossey, S. Narayanan, T.R. Bewley, "Dynamics & control of a jet in cross-flow: direct 
numerical simulations & experiments", submitted to 2001 (IUTAM) Symposium on Turbulent Mixing 
and Combustion, June 3-6, 2001, Kingston. 
[cl3] P. Mehta, A. Banaszuk, "On the identification of heat release nonhnearity in the thermoacoustic 
feedback loop", submitted to 2001 CDC, Orlando December 2001. 

5.3 Invited Sessions 

The following invited sessions were organized with AFOSR support and contain AFOSR-funded pa- 

pers: 
Control applications in flows and turbomachines (organized by Scott Copeland and Satish Narayanan). 

CCA 99, Hawaii. 
Theory and Applications of Extremum-Seeking Control (organized by Andrzej Banaszuk and Mario 

Rotea). ACC 2000, Chicago. 
Control of Mixing in Shear Flows (organized by Andrzej Banaszuk and Luca Cortelezzi). CDC 2000, 

Sydney. 
Nonlinear Model Validation (organized by Roy Smith and Andrzej Banaszuk). CDC 2000, Sydney. 

5.4 Talks at meetings 

The talks at meetings that do not have proceedings include: 
Talk at Flow Control Worskshop, Boston University, October 1999 

Andrzej Banaszuk, Bernd R. Noack, Igor Mezic 
A hierarchy of vortex-based models for coherent-structure control 
The shear flow phenomena strongly affect operations of industrial products like jet engines, helicopter- 
s, and HVAC devices. For instance, in the case of airfoils at high angle of attack the flow separates 
close to the leading edge causing decrease in lift and increase in drag. Full attachment of the flow is 
desirable, but not yet technologically feasible goal in most industrial cases, because of limited actuator 
authority. However, experiments show that one can significantly increase the lift and reduce drag by 
exciting beneficial coherent structures in the separated shear layer using relatively small actuation 
effort. Abundance of shear flow phenomena in industrial products, high potential benefits from shear 
flow control, technical feasibility of shear flow control demonstrated in experiments indicate need to fo- 
cus research in the area of shear flow control. In our talk we present a general framework for modeling, 
analysis, and control of shear flows using tools from dynamical systems and control theory. We show an 
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example of application of the framework to control of mixing in combustors. We also identify areas of 
basic research in control of shear flows that can support technology transition in reasonably short time. 

Talks at APS (Americam Physical Society) meeting, November 2000, Washington DC 
Peter Blossey, Thomas Bewley (University of California, San Diego, CA), Satish Narayanan (United 
Technologies Research Center, East Hartford, CT) 
Direct numerical simulations of a jet in crossflow 
The mixing characteristics of a jet in cross-flow can be substantially enhanced using unsteady mod- 
ulation of the jet flow, as noted in prior experimental investigations. We explore the dynamics of a 
jet in crossflow with direct numerical simulations to assess the impact of unsteady forcing on its spa- 
tiotemporal mixing properties. The Reynolds number (Re = Ujd/v) for tbe jet is 3000 with a velocity 
ratio (Uj/Uoo) of 6. The simulations are performed in a periodic channel flow geometry and include a 
fringe region to remove disturbances from the flow at the domain entrance. In addition to exploring 
the vorticity dynamics in the flow field, we study the statistical properties of this highly 3D, unsteady 
flow, particularly of its cross-stream mixing. A conserved scalar has been added to the simulations to 
enable quantification of the jet mixing, and a variety of mixing metrics are assessed to evaluate the 
effect of unsteady jet forcing. Conventional, time-averaged measures of mixing can be misleading in 
this flow. Higher order statistics of mixing, however, are shown to be insightful in discriminating the 
extent of mixing among various unsteady flow patterns. 

Thomas John (Cornell University, Ithaca, NY), Satish Narayanan, Andrzej Banaszuk, Shubhro Ghosh 
(United Technologies Research Center, East Hartford, CT) 
Reduced-order model for mixing in a jet in cross-flow 
We present a reduced-order model describing the unsteady mixing associated with the three-dimensional 
coherent structure dynamics of a jet in cross-flow. The dynamically significant flow features are the 
shear layer structures emanating in the jet near field, and a pair of counter-rotating vortices emerging 
in the intermediate and far fields of the jet (where the jet begins to bend and align with the oncoming 
cross flow). We postulate a "parabolized" vortex model consistent with the observed dominant vortex 
dynamics. The velocity and vorticity fields obtained from the model compare well qualitatively with 
prior experimental and direct numerical simulation results. Lagrangian particle simulations are used 
to quantify the extent of mixing, relative to a mixing dynamical system, at several spatial scales. The 
model appears to be suitable for use in the development of novel control 1?^^ for mixing enhancement. 

Andrzej Banaszuk (United Technologies Research Center), Igor Mezic (Division of Engineering and 
Applied Sciences, Harvard University) 
Control of point vortex systems 
We present results on controllability and observability of point vortex motion actuated by external 
potential fields. Sufficient conditions for transformation of a point vortex system into the so-called flat 
coordinates which allow for simple description of controllability and observability of the system will be 
presented. Control of statistical, large-scale properties of point vortex systems is also considered. We 
present a number of examples of specific vortex configurations such as counterrotating vortex pairs. 
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